1.2.1等差数列、等比数列通项与求和专题限时训练(小题提速练)(建议用时:45分钟)一、选择题1.等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14解析:由题意知a1=2,由S3=3a1+3×22×d=12,解得d=2,所以a6=a1+5d=2+5×2=12.故选C.答案:C2.等差数列{an}的公差为2,若a2,a4,a8成等比数列,则数列{an}的前n项和Sn=()A.n(n+1)B.n(n-1)C.nn+12D.nn-12解析: a2,a4,a8成等比数列,∴a24=a2·a8,即(a1+3d)2=(a1+d)(a1+7d),将d=2代入上式,解得a1=2.∴Sn=2n+nn-1·22=n(n+1).故选A.答案:A3.在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11等于()A.58B.88C.143D.176解析:S11=11a1+a112=11a4+a82=88.故选B.答案:B4.在各项均为正数的等比数列{an}中,若am+1·am-1=2am(m≥2),数列{an}的前n项积为Tn,若T2m-1=512,则m的值为()A.4B.5C.6D.7解析:由等比数列的性质可知am+1·am-1=a2m=2am(m≥2),所以am=2(m≥2),即an=2,即数列{an}为常数列,所以T2m-1=22m-1=512=29,即2m-1=9,所以m=5.故选B.答案:B5.已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=()A.7B.5C.-5D.-7解析: {an}是等比数列,∴a5a6=a4a7=-8,联立a4+a7=2,a4a7=-8,可解得a4=4,a7=-2或a4=-2,a7=4.当a4=4,a7=-2时,q3=-12,故a1+a10=a4q3+a7q3=-7;当a4=-2,a7=4时,q3=-2,同理有a1+a10=-7.答案:D6.已知-2,a1,a2,-8成等差数列,-2,b1,b2,b3,-8成等比数列,则a2-a1b2等于()A.14B.12C.-12D.12或-12解析: -2,a1,a2,-8成等差数列,∴a2-a1=-8--23=-2.又 -2,b1,b2,b3,-8成等比数列,∴b22=(-2)×(-8)=16,解得b2=±4.又b21=-2b2,∴b2=-4,∴a2-a1b2=-2-4=12.故选B.答案:B7.设各项都是正数的等比数列{an},Sn为前n项和,且S10=10,S30=70,那么S40等于()A.150B.-200C.150或-200D.400或-50解析:依题意,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30.又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.故选A.答案:A8.各项都是正数的等比数列{an}中,3a1,12a3,2a2成等差数列,则a10+a12+a15+a19+a20+a23a8+a10+a13+a17+a18+a21=()A.1B.3C.6D.9解析:依题意可知,a3=3a1+2a2,即a1q2=3a1+2a1q,即q2-2q-3=0,解得q=3或q=-1,由于{an}为正项等比数列,所以q=3.则a10+a12+a15+a19+a20+a23a8+a10+a13+a17+a18+a21=q2a8+a10+a13+a17+a18+a21a8+a10+a13+a17+a18+a21=9.故选D.答案:D9.在等差数列{an}中,a1=-2015,其前n项和为Sn,若S1212-S1010=2,则S2016的值等于()A.-2015B.2015C.2016D.0解析:设数列{an}的公差为d.S12=12a1+12×112d,S10=10a1+10×92d,所以S1212=12a1+12×112d12=a1+112d.S1010=a1+92d,所以S1212-S1010=d=2,所以S2016=2016×a1+2015×20162d=0.故选D.答案:D10.已知数列an的前n项和为Sn,且Sn+1+Sn=n2-19n2(n∈N*),若a10<a11,则Sn取最小值时n的值为()A.10B.9C.11D.12解析: Sn+1+Sn=n2-19n2①,由等差数列前n项和的性质,知数列{an}为单调递增的等差数列,将n换为n+1得,Sn+2+Sn+1=n+12-19n+12②,②-①得,an+2+an+1=n-9,当n=9时,a11+a10=0,又a10<a11,∴a11>0,a10<0,∴n=10时,Sn取最小值.故选A.答案:A11.如果x=[x]+{x},[x]∈Z,0≤{x}<1,就称[x]表示x的整数部分,{x}表示x的小数部分.已知数列{an}满足a1=5,an+1=[an]+2{an},则a2019-a2018等于()A.2019-5B.2018+5C.6+5D.6-5解析:a1=5,an+1=[an]+2{an},∴a2=2+25-2=6+25,a3=10+225-4=12+5,a4=14+25-2=18+25,a5=22+225-4=24+5,⋯⋯.∴a2018=6×2017+25,a2019=6×2018+5.则a2019-a2018=6-5.故选D.答案:D12.数列{an}满足an+1...