专题09空间几何体的体积与表面积【母题来源一】【2019年高考江苏卷】如图,长方体1111ABCDABCD的体积是120,E为1CC的中点,则三棱锥E-BCD的体积是▲.【答案】10【解析】因为长方体1111ABCDABCD的体积为120,所以1120ABBCCC,因为E为1CC的中点,所以112CECC,由长方体的性质知1CC底面ABCD,所以CE是三棱锥EBCD的底面BCD上的高,所以三棱锥EBCD的体积1132VABBCCE111111201032212ABBCCC.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【母题来源二】【2018年高考江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为21421233.【名师点睛】解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.【母题来源三】【2017年高考江苏卷】如图,在圆柱12OO内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱12OO的体积为1V,球O的体积为2V,则12VV的值是.【答案】32【解析】设球半径为r,则213223423VrrVr.故答案为32.【名师点睛】空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.【命题意图】了解球、棱柱、棱锥、台的表面积和体积的计算公式,主要考查空间想象能力以及运算求解能力.【命题规律】立体几何问题既是高考的必考点,也是考查的难点,其在高考中的命题形式较为稳定,主要以柱体、椎体、球、组合体为载体考查常见几何体的体积或表面积公式,考查的核心素养是直观想象和数学运算.提高空间想象能力,熟记柱体、椎体和球体的体积公式是求解此类问题的关键.【方法总结】(一)求柱体、锥体、台体体积的一般方法有:(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积法、割补法等方法进行求解.①等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.②割补法:运用割补法处理不规则的空间几何体或不易求解的空间几何体的体积计算问题,关键是能根据几何体中的线面关系合理选择截面进行切割或者补成规则的几何体.要弄清切割后或补形后的几何体的体积是否与原几何体的体积之间有明显的确定关系,如果是由几个规则的几何体堆积而成的,其体积就等于这几个规则的几何体的体积之和;如果是由一个规则的几何体挖去几个规则的几何体而形成的,其体积就等于这个规则的几何体的体积减去被挖去的几个几何体的体积.因此,从一定意义上说,用割补法求几何体的体积,就是求体积的“加、减”法.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.(二)球的表面积和体积的求解策略:(1)确定一个球的条件是球心和球的半径,已知球的半径可以利用公式求球的表面积和体积;反之,已知球的体积或表面积也可以求其半径.熟记球的表面积公式为24πR,体积公式为34π3R.(2)与球有关的实际应用题一般涉及水的容积问题,解题的关键是明确球的体积与水的容积之间的关系,正确建立等量关系.(3)有关球的截面问题,常画出过球心的截面圆,将空间几何问题转化为平面中圆的有关问题解决.球心到截面的距离d与球的半径R及截面圆的半径r之间满足关...