第1页(共26页)2014-2015学年江苏省苏州市八年级(下)期末数学模拟试卷一、选择题(每题2分,共20分)1.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的2.如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)3.下列命题:①任何数的平方都大于0;②若a>1,b>1,则a+b>2;③同位角相等;④直角三角形的两个锐角互余,其中是真命题的有()A.1个B.2个C.3个D.4个4.两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cmB.54cmC.56cmD.64cm5.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.B.C.D.6.分式方程=有增根,则m的值为()A.0和3B.1C.1和﹣2D.37.如图,正比例函数y=x与反比例函数y=的图象交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积为()A.1B.2C.3D.48.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()第2页(共26页)A.B.C.D.9.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.10.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,则点C2坐标为()A.B.C.D.二、填空题(每题3分,共30分)11.当x=时,分式的值为零.12.反比例函数y=的图象的两个分支分别在第二、四象限,则m.13.若两个等边三角形的边长分别为a与3a,则它们的面积之比为.第3页(共26页)14.经验表明,长与宽的比为黄金比的物体一般都符合人们的审美观,一位建筑师在图纸上设计的某建筑物的窗户的高是3.24m,那么这个窗户的宽约是m.(注:通常建筑物的窗户的高度大于宽度,结果保留两位小数)15.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是.16.命题“等腰三角形的两个底角相等”的逆命题是.17.如图,E是?ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为.18.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为.19.如图,已知反比例函数y=(k1>0),y=(k2<0).点A在y轴的正半轴上,过点A作直线BC∥x轴,且分别与两个反比例函数的图象交于点B和C,连接OC、OB.若△BOC的面积为,AC:AB=2:3,则k1=,k2=.第4页(共26页)20.如图所示,△ABC的面积为1,取BC边中点E作DE∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1,再取BE中点E1,作E1D1∥BF,E1F1∥EF得到四边形E1D1FF1,它的面积记作S2,照此规律作下去,S2013=.三、解答题(共50分)21.解方程:.22.已知a=﹣,求[﹣]的值.23.小峰与小月进行跳绳比赛,在相同的时间内,小峰跳了100个,小月跳了110个,如果小月比小峰每分钟多跳20个,试求出小峰每分钟跳绳多少个.24.如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD,交AD的延长线于点E,BF=EF.求证:EF∥AC.第5页(共26页)25.为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.26.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于点C,CD垂直于x轴,...