电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

空间向量运算的坐标表示教学设计VIP免费

空间向量运算的坐标表示教学设计_第1页
1/5
空间向量运算的坐标表示教学设计_第2页
2/5
空间向量运算的坐标表示教学设计_第3页
3/5
空间向量运算的坐标表示教学设计讲课人:宋海阳指导人:韩红松一、教学内容分析课程标准指出:“用空间向量解决几何问题,提供了新视角。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。学生将在平面向量的基础上,把平面向量及运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量法在研究几何图形中的作用,进一步发展空间想象能力和几何直观能力。”本节课是在学生已经掌握了平面向量运算的坐标表示的基础上进行的,是《空间向量运算的坐标表示》的第一课时,是用向量法解决立体几何问题的基础,让学生初步体会向量法在解决立体几何问题中的优越性,帮助空间想象能力较弱的同学顺利解题。二、学生学情分析1、学生学习本节内容的基础本节的学习对象是高二学生,他们已经掌握了平面向量坐标运算及规律,并学会了空间向量的几何形式及其运算,数学基础较为扎实,学习上具备了一定的观察、分析、解决问题的能力,但在探究问题的内部联系和内在发展上还有所欠缺.所以通过教师的引导,学生的自主探索,不断地完善自我的认知结构。2、学生学习本节内容的能力具有一定的画图能力,图形思维与代数思维可以结合起来。具有一定的推导能力,具备一定的数学的严谨性。3、学生学习本节内容的心理本节内容学生容易接受,学生在学习的过程中会有很强的求知欲和成就感,对培养数学思想有推动作用。三、教学目标分析1、知识与技能:(1)会运算空间向量的加法、减法、数乘及数量积的坐标表示;(2)熟记空间向量长度公式、两向量夹角公式、空间两点间距离公式;(3)会根据向量的坐标,判断两个向量共线或垂直;(4)掌握用向量法解决两条异面直线所成角的方法。2、过程与方法:(1)在与平面向量的坐标运算的比较的基础上,培养学生观察、分析、类比转化的能力;(2)通过对几何图形的研究,使学生恰当地建立空间直角坐标系,从“定性推理”到“定量计算”,从而提高分析问题和解决问题的能力。3、情感态度价值观:(1)通过自主探究与合作交流的教学环节的设置,激发学生的学习热情和求知欲,充分体现学生的主体地位;(2)通过数形结合的思想和方法的应用,让学生感受和体会数学的魅力。四、教学重点难点分析1、教学重点(1)掌握空间向量运算的坐标表示;(2)应用向量法求两条异面直线所成角及线线垂直问题。2、教学难点(1)建立恰当的空间直角坐标系,正确求出点的坐标及向量的坐标;(2)正确理解两条异面直线所成角与两个空间向量夹角的区别。五、教学策略分析1、教学方法:自主探索、观察发现、类比猜想、合作交流2、教学手段:多媒体,电子白板3、教学准备:(1)由于维度的增加,新知识不能直接被学生在原有的知识结构中同化吸收,为学生配备了相应的训练题,通过训练更好地接受空间向量的坐标运算;(2)在求异面直线所成角时,会出现所求余弦值为负数。引领学生复习异面直线所成角的概念,强化应用空间向量解决几何问题与几何法的差异。六、教学过程分析(一)自主预习,熟悉要领1.精读教材95页,用红笔勾画重点、记忆公式,完成以下内容:(1)空间向量的坐标运算若123(,,)aaaa,123(,,)bbbb,则_________ab,_____________ab,_____________()aR,ab_______________.(2)空间两个向量共线的充要条件://________________________________________()abR________________________________________()R(3)空间两个非零向量垂直的充要条件abab0___________.(4)向量的模与夹角a______________________;cosa,b_____________________________________________.(5)空间内两点间的距离公式:(6)线段中点坐标公式2.独立完成自我检测,小组内对答案解惑。【自我检测】1.已知a?=(-3,2,5),b?=(1,5,-1),求:(1)a?+b;???(2)3a?-b?;(3)6a?;(4)a??b?2.已知a?=(2,-1,3),b?=(-4,2,x),且a?b?,求x的值。3.已知A(3,5,-7),B(-2,4,3),求AB?????,BA?????,线段AB的中点坐标及线段AB的长。设计意图:检测学生预习效果,进而熟悉本节知识。(二)合作探究,解决疑难探究一:求异面直线所成的角如图1,在正方体ABCD-A1B1C1D1中,点E1,F1分别...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

空间向量运算的坐标表示教学设计

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部