方差和标准差一、教学目标:理解随机变量的方差和标准差的含义,会求随机变量的方差和标准差,并能解决有关实际问题。二、教学重点:随机变量的方差和标准差难点:比较两个随机变量的期望与方差的大小,从而解决实际问题三、教学过程:1、离散型随机变量X的方差:V(X)===E(X2)-E2(X)2、离散型随机变量X的标准差=3、例题:例1、求超几何分布H(5,10,30)的方差V(X)和标准差小结:(1)超几何分布的方差:V(X)=例2、求二项分布B(10,0.05)的方差和标准差小结:(2)服从二项分布的方差:V(X)=例3、甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平解:+(10-9);同理有由上可知,,所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.例4、A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A机床B机床次品数ξ10123次品数ξ10123概率P0.70.20.060.04概率P0.80.060.040.10问哪一台机床加工质量较好解:Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它们的期望相同,再比较它们的方差Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.6064,Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.9264.∴Dξ1