电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

贝特朗概率悖论的解释VIP免费

贝特朗概率悖论的解释_第1页
1/4
贝特朗概率悖论的解释_第2页
2/4
贝特朗概率悖论的解释_第3页
3/4
贝特朗概率悖论的解释第2页贝特朗概率悖论的解释贝特朗概率悖论是一个著名的悖论题,与其他的集合悖论不一样,这个悖论只是我们看起来“错”而已,也并没有像集合悖论一样带来一次数学危机,正确审视它,就是让我们对“几何概型”这一概念更加地深入了解而已。我就不废话,我们直接来看什么是贝特朗概率悖论,百度上有很多,随便一搜就到处都是题目是这样子滴:在圆中做弦MN,求使MN的长大于圆内接正三角形边长的概率。这道题若从不同的角度看,就有几种不同的答案,百度百科里有,我就不想在这里多费口舌,希望各位先到那里去看看具体的答案,我把图片下来,大家可以自己看:百度百科词条解释虽然这多种解法各有各得说法,似乎每一个都对,但是悖论毕竟是悖论,他终究是错的。概率问题一个基本的原则就是,不管从哪个角度看,答案只能有一个,否则一件事情的概率都不一致,这问题要么就是本身就有问题,要么就是条件不够。而对于贝特朗概率悖论所涉及到的问题,正是如此,因为其条件不够。首先我们看第一种“解法”。解法1的思路是,在于AB平行的弦中,只有与PQ交点落在MN上的,弦长才大于根号3。弦与PQ的交点肯定就是落在第4页能分布于以O为圆心,半径为1/2的圆中,而该圆的面积占据大圆的1/4,故概率为1/4.学夫子自己的看法来说,这种解法最牵强,他将弦的分布划归为其中点在圆中的分布,认为“一个中点M只对应于一条弦”,显然这是错误的,因为圆心O所对应的弦有无数条,而对于非圆心的点M,以M为中点的弦只有一条。所以这本身就不是等可能的,这种解法就是错误,他就跟前两种解法不一样,加上条件就是对的,这种解法无论加什么条件都是错的,因为不是条件缺与不缺的问题,而是犯了概率论中最基本的前提错误——等可能分布。不过网络上更倾向于第二种方法的答案作为这道题的“标准答案”,因为任意给一条弦,他应该由圆周上的两点决定。文章

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

贝特朗概率悖论的解释

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部