第一篇集合与常用逻辑用语第1讲集合的概念和运算A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(·浙江)设集合A={x|13或x<-1},所以A∩(∁RB)={x|31,x∈R},B={y|y=2x2,x∈R},则(∁RA)∩B=().A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.∅解析∁RA={x|-1≤x≤1},B={y|y≥0},∴(∁RA)∩B={x|0≤x≤1}.答案C二、填空题(每小题5分,共10分)5.(·湘潭模拟)设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.解析 3∈B,又a2+4≥4,∴a+2=3,∴a=1.答案16.(·四川)设全集U={a,b,c,d},集合A={a,b},B={b,c,d},则(∁UA)∪(∁UB)=________.解析依题意得知,∁UA={c,d},∁UB={a},(∁UA)∪(∁UB)={a,c,d}.答案{a,c,d}三、解答题(共25分)7.(12分)若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.解 A=B,∴B={x|x2+ax+b=0}={-1,3}.∴∴a=-2,b=-3.8.(13分)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.解(1) 9∈(A∩B),∴9∈A且9∈B,∴2a-1=9或a2=9,∴a=5或a=-3或a=3,经检验a=5或a=-3符合题意.∴a=5或a=-3.(2) {9}=A∩B,∴9∈A且9∈B,由(1)知a=5或a=-3.当a=-3时,A={-4,-7,9},B={-8,4,9},此时A∩B={9},当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9},不合题意.∴a=-3.B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1.(·广东)已知集合A={(x,y)|x,y是实数,且x2+y2=1},B={(x,y)|x,y是实数,且y=x},则A∩B的元素个数为().A.0B.1C.2D.3解析集合A表示圆x2+y2=1上的点构成的集合,集合B表示直线y=x上的点构成的集合,可判定直线和圆相交,故A∩B的元素个数为2.答案C2.(·潍坊二模)设集合A=,B={y|y=x2},则A∩B=().A.[-2,2]B.[0,2]C.[0∞,+)D.{(-1,1),(1,1)}解析A={x|-2≤x≤2},B={y|y≥0},∴A∩B={x|0≤x≤2}=[0,2].答案B二、填空题(每小题5分,共10分)3.给定集合A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合,给出如下三个结论:①集合A={-4,-2,0,2,4}为闭集合;②集合A={n|n=3k,k∈Z}为闭集合;③若集合A1,A2为闭集合,则A1∪A2为闭集合.其中正确结论的序号是________.解析①中,-4+(-2)=-6∉A,所以不正确.②中设n1,n2∈A,n1=3k1,n2=3k2,n1+n2∈A,n1-n2∈A,所以②正确.③令A1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z},3∈A1,2∈A2,但是,3+2∉A1∪A2,则A1∪A2不是闭集合,所以③不正确.答案②4.已知集合A=,B={x|x2-2x-m<0},若A∩B={x|-1