1.3三角函数的诱导公式1自我小测1.下列各式不正确的是()A.sin(α+180°)=-sinαB.cos(-α+β)=-cos(α-β)C.sin(-α-360°)=-sinαD.cos(-α-β)=cos(α+β)2.下列各数中,与cos1030°相等的是()A.cos50°B.-cos50°C.sin50°D.-sin50°3.设tan(π+α)=2,则=()A.3B.C.1D.-14.若-480°角的终边上一点(-1,a),则a的值为()A.B.-C.-D.5.记cos(-80°)=k,那么tan100°等于()A.B.-C.D.-6.已知tan=5,则tan=__________.7.化简:sin(π+α)sin(2π-α)-cos(π-α)cos(-2π-α)=__________.8.已知x=+(k∈Z),则x构成的集合是__________.9.求sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°的值.10.已知α是第三象限角,且f(α)=.(1)化简f(α);(2)若sinα=-,求f(α);(3)若α=-,求f(α).参考答案1.解析:cos(-α+β)=cos[-(α-β)]=cos(α-β).答案:B2.解析:cos1030°=cos(1080°-50°)=cos(-50°)=cos50°.答案:A3.解析:∵tan(π+α)=2,∴tanα=2.∴====3.答案:A4.解析:sin(-480°)=-sin480°=-sin(360°+120°)=-sin(180°-60°)=-.而由三角函数定义得sin(-480°)=,∴=-,解得a=-.答案:C5.解析:∵cos(-80°)=cos80°=k,sin80°==,∴tan100°=-tan80°=-.故选B.答案:B6.解析:tan=tan=-tan=-5.答案:-57.解析:原式=-sinαsin(-α)+cosαcos(2π+α)=sin2α+cos2α=1.答案:18.解析:当k=2n(n∈Z)时,x=+=2.当k=2n+1(n∈Z)时,x=+=+=-2.故x构成的集合是{2,-2}.答案:{2,-2}9.解:原式=-sin(3×360°+120°)·cos(3×360°+210°)-cos(2×360°+300°)·sin(2×360°+330°)+tan(2×360°+225°)=-sin(180°-60°)·cos(180°+30°)-cos(360°-60°)·sin(360°-30°)+tan(180°+45°)=sin60°cos30°+cos60°sin30°+tan45°=×+×+1=2.10.解:(1)f(α)==cosα.(2)∵sinα=-,且α是第三象限角,∴f(α)=cosα=-=-=-.(3)f=cos=cos=cos=.