电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高优指导高考数学一轮复习 第七章 不等式 33 二元一次不等式(组)与简单的线性规划问题考点规范练 文 北师大版-北师大版高三全册数学试题VIP免费

高优指导高考数学一轮复习 第七章 不等式 33 二元一次不等式(组)与简单的线性规划问题考点规范练 文 北师大版-北师大版高三全册数学试题_第1页
1/5
高优指导高考数学一轮复习 第七章 不等式 33 二元一次不等式(组)与简单的线性规划问题考点规范练 文 北师大版-北师大版高三全册数学试题_第2页
2/5
高优指导高考数学一轮复习 第七章 不等式 33 二元一次不等式(组)与简单的线性规划问题考点规范练 文 北师大版-北师大版高三全册数学试题_第3页
3/5
考点规范练33二元一次不等式(组)与简单的线性规划问题考点规范练A册第25页基础巩固组1.如果点(1,b)在两条平行直线6x-8y+1=0和3x-4y+5=0之间,则b应取的整数值为()A.2B.1C.3D.0答案:B解析:由题意知(6-8b+1)(3-4b+5)<0,即(b-2)<0,解得0)取得最大值的最优解有无穷多个,则a的值是()A.B.C.2D.导学号〚32470782〛答案:B解析:直线y=-ax+z(a>0)的斜率为-a<0,当直线y=-ax平移到直线AC位置时取得最大值的最优解有无穷多个. kAC=-,∴-a=-,即a=.4.(2015广东,文4)若变量x,y满足约束条件则z=2x+3y的最大值为()A.2B.5C.8D.10答案:B解析:约束条件表示的可行域如图阴影部分所示,而z=2x+3y可变形为y=-x+表示直线y=-x在y轴上的截距,由图可知当直线经过点A(4,-1)时z取最大值,最大值为z=2×4+3×(-1)=5.5.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是()A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)导学号〚32470783〛答案:A解析:由顶点C在第一象限且与A,B构成正三角形可求得点C坐标为(1+,2),将目标函数化为斜截式为y=x+z,结合图形(图略)可知当y=x+z过点C时z取到最小值,此时zmin=1-,当y=x+z过点B时z取到最大值,此时zmax=2,综合可知z的取值范围为(1-,2).6.已知x,y满足约束条件若z=y-ax取得最大值的最优解不唯一,则实数a的值为()A.或-1B.2或C.2或1D.2或-1答案:D解析:(方法一)由题中条件画出可行域如图中阴影部分所示,可知A(0,2),B(2,0),C(-2,-2),则zA=2,zB=-2a,zC=2a-2,要使目标函数取得最大值的最优解不唯一,只要zA=zB>zC或zA=zC>zB或zB=zC>zA,解得a=-1或a=2.(方法二)目标函数z=y-ax可化为y=ax+z,令l0:y=ax,平移l0,则当l0∥AB或l0∥AC时符合题意,故a=-1或a=2.7.若x,y满足且z=y-x的最小值为-4,则k的值为()A.2B.-2C.D.-答案:D解析:如图,作出所表示的平面区域,作出目标函数取得最小值-4时对应的直线y-x=-4,即x-y-4=0.显然z的几何意义为目标函数对应直线x-y+z=0在x轴上的截距的相反数,故该直线与x轴的交点(4,0)必为可行域的顶点,又kx-y+2=0恒过点(0,2),故k==-.故选D.8.已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.5B.29C.37D.49导学号〚32470784〛答案:C解析:由题意,画出可行域Ω,圆心C∈Ω,且圆C与x轴相切,所以b=1.所以圆心在直线y=1上,求得与直线x-y+3=0,x+y-7=0的两交点坐标分别为A(-2,1),B(6,1),所以a∈[-2,6].所以a2+b2=a2+1∈[1,37],所以a2+b2的最大值为37.故选C.9.设x,y满足约束条件则z=2x-y的最大值为.答案:3解析:画出可行域如图所示.画出直线2x-y=0,并平移,当直线经过点A(3,3)时,z取最大值,且最大值为z=2×3-3=3.10.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则|OM|的最小值是.导学号〚32470785〛答案:解析:由约束条件可画出可行域如图阴影部分所示.由图可知OM的最小值即为点O到直线x+y-2=0的距离,即dmin=.11.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1kg、B原料2kg;生产乙产品1桶需耗A原料2kg,B原料1kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12kg.求通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润.解:设每天分别生产甲产品x桶,乙产品y桶,相应的利润为z元,则z=300x+400y,在坐标平面内画出该不等式组表示的平面区域及直线300x+400y=0,平移该直线,当平移到经过该平面区域内的点A(4,4)时,相应直线在y轴上的截距达到最大,此时z=300x+400y取得最大值,最大值是z=300×4+400×4=2800,即该公司可获得的最大利润是2800元.能力提升组12.(2015重庆,文10)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()A.-3B.1C.D.3导学号〚32470786〛答案:B解析:如图,要...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高优指导高考数学一轮复习 第七章 不等式 33 二元一次不等式(组)与简单的线性规划问题考点规范练 文 北师大版-北师大版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部