电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第二章 圆锥曲线与方程 2.1 椭圆 2.1.1 椭圆及其标准方程精练(含解析)北师大版选修1-1-北师大版高二选修1-1数学试题VIP免费

高中数学 第二章 圆锥曲线与方程 2.1 椭圆 2.1.1 椭圆及其标准方程精练(含解析)北师大版选修1-1-北师大版高二选修1-1数学试题_第1页
1/4
高中数学 第二章 圆锥曲线与方程 2.1 椭圆 2.1.1 椭圆及其标准方程精练(含解析)北师大版选修1-1-北师大版高二选修1-1数学试题_第2页
2/4
高中数学 第二章 圆锥曲线与方程 2.1 椭圆 2.1.1 椭圆及其标准方程精练(含解析)北师大版选修1-1-北师大版高二选修1-1数学试题_第3页
3/4
1.1椭圆及其标准方程1.设定点F1(0,-2),F2(0,2),动点P满足条件|PF1|+|PF2|=m+(m>2),则点P的轨迹是()A.椭圆B.线段C.不存在D.椭圆或线段解析:因为m>2,所以m+>2=4,所以点P的轨迹为以F1,F2为焦点的椭圆.答案:A2.椭圆=1的焦点坐标是()A.(±5,0)B.(0,±5)C.(0,±12)D.(±12,0)解析:因为c2=a2-b2=169-25=122,所以c=12.又焦点在y轴上,故焦点坐标为(0,±12).答案:C3.已知椭圆=1上一点P到椭圆的一个焦点的距离为3,到另一个焦点的距离为7,则m=()A.10B.5C.15D.25解析:设椭圆的焦点分别为F1,F2,则由椭圆的定义,知|PF1|+|PF2|=2a=10,所以a=5,所以a2=25,所以椭圆的焦点在x轴上,m=25.答案:D4.已知椭圆=1上一点P到两个焦点F1,F2的距离之差为2,则△PF1F2的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形解析:不妨令|PF1|-|PF2|=2,由|PF1|+|PF2|=8,|PF1|-|PF2|=2,解得|PF1|=5,|PF2|=3.又|F1F2|=4,满足|PF2|2+|F1F2|2=|PF1|2,∴△PF1F2为直角三角形.答案:A15.导学号01844010已知P是椭圆=1上一点,F1,F2为焦点,且∠F1PF2=90°,则△PF1F2的面积是.解析:由椭圆定义知|PF1|+|PF2|=2a=10,①∵∠F1PF2=90°,∴|PF1|2+|PF2|2=|F1F2|2=4c2=36,②由①②,得|PF1|·|PF2|=32.∴S=|PF1|·|PF2|=16.答案:166.若椭圆=1的焦距等于2,则m的值是.解析:当椭圆的焦点在x轴上时,a2=m,b2=15,所以c2=m-15,所以2c=2=2,解得m=16;当椭圆的焦点在y轴上时,同理有2=2,所以m=14.答案:16或147.已知椭圆的焦点是F1(-1,0),F2(1,0),P是椭圆上的一点,若|F1F2|是|PF1|和|PF2|的等差中项,则该椭圆的方程是.解析:由题意得2|F1F2|=|PF1|+|PF2|,所以4c=2a=4,所以a=2.又c=1,所以b2=a2-c2=3,故椭圆方程为=1.答案:=18.求以椭圆9x2+5y2=45的焦点为焦点,且经过点M(2,)的椭圆的标准方程.解由9x2+5y2=45,得=1.其焦点F1(0,2),F2(0,-2).2设所求椭圆方程为=1.又∵点M(2,)在椭圆上,∴=1.①又a2-b2=4,②解①②得a2=12,b2=8.故所求椭圆方程为=1.9.导学号01844011已知P是椭圆+y2=1上的一点,F1,F2是椭圆的两个焦点.(1)当∠F1PF2=60°时,求△F1PF2的面积;(2)当∠F1PF2为钝角时,求点P横坐标的取值范围.解(1)由椭圆的定义,得|PF1|+|PF2|=4,①且F1(-,0),F2(,0).在△F1PF2中,由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos60°.②由①②得|PF1|·|PF2|=.所以|PF1|·|PF2|sin∠F1PF2=.(2)设点P(x,y),由已知∠F1PF2为钝角,得<0,即(x+,y)·(x-,y)<0,又y2=1-,所以x2<2,解得-

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第二章 圆锥曲线与方程 2.1 椭圆 2.1.1 椭圆及其标准方程精练(含解析)北师大版选修1-1-北师大版高二选修1-1数学试题

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群