课时跟踪检测(二)直观图一、基本能力达标1.下列关于直观图的说法不正确的是()A.原图形中平行于y轴的线段,对应线段平行于直观图中y′轴,长度不变B.原图形中平行于x轴的线段,对应线段平行于直观图中x′轴,长度不变C.画与直角坐标系xOy对应的x′O′y′时,∠x′O′y可以画成45°D.在画直观图时,由于选轴的不同所画直观图可能不同解析:选A平行于y轴的线段,直观图中长度变为原来的一半,故A错.2.若把一个高为10cm的圆柱的底面画在x′O′y′平面上,则圆柱的高应画成()A.平行于z′轴且大小为10cmB.平行于z′轴且大小为5cmC.与z′轴成45°且大小为10cmD.与z′轴成45°且大小为5cm解析:选A平行于z轴(或在z轴上)的线段,在直观图中的方向和长度都与原来保持一致.3.水平放置的△ABC的斜二测直观图如图所示,已知B′C′=4,A′C′=3,B′C′∥y′轴,则△ABC中AB边上的中线的长度为()A.B.C.5D.解析:选A由斜二测画法规则知AC⊥BC,即△ABC为直角三角形,其中AC=3,BC=8,所以AB=,AB边上的中线长度为.故选A.4.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20m,5m,10m,四棱锥的高为8m,若按1∶500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和四棱锥的高应分别为()A.4cm,1cm,2cm,1.6cmB.4cm,0.5cm,2cm,0.8cmC.4cm,0.5cm,2cm,1.6cmD.2cm,0.5cm,1cm,0.8cm解析:选C由比例尺可知,长方体的长、宽、高和四棱锥的高应分别为4cm,1cm,2cm和1.6cm,再结合直观图特征,图形的尺寸应为4cm,0.5cm,2cm,1.6cm.5.已知水平放置的△ABC按斜二测画法得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC是一个()A.等边三角形B.直角三角形C.三边中有两边相等的等腰三角形D.三边互不相等的三角形解析:选A根据斜二测画法的原则,得BC=B′C′=2,OA=2A′O′=2×=,AO⊥BC,∴AB=AC=BC=2,∴△ABC是等边三角形.6.水平放置的正方形ABCO如图所示,在平面直角坐标系xOy中,点B的坐标为(4,4),则由斜二测画法画出的该正方形的直观图中,顶点B′到x′轴的距离为________.解析:由斜二测画法画出的直观图如图所示,作B′E⊥x′轴于点E,在Rt△B′EC′中,B′C′=2,∠B′C′E=45°,所以B′E=B′C′sin45°=2×=.答案:7.已知△ABC的直观图如图所示,则原△ABC的面积为________.解析:由题意,易知在△ABC中,AC⊥AB,且AC=6,AB=3.∴S△ABC=×6×3=9.答案:98.在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2cm,则在xOy坐标系中,四边形ABCO的形状为______,面积为______cm2.解析:由斜二测画法的特点,知该平面图形的直观图的原图,即在xOy坐标系中,四边形ABCO是个长为4cm,宽为2cm的矩形,所以四边形ABCO的面积为8cm2.答案:矩形89.画出水平放置的四边形OBCD(如图所示)的直观图.解:(1)过点C作CE⊥x轴,垂足为E,如图①所示,画出对应的x′轴、y′轴,使∠x′O′y′=45°,如图②所示.(2)如图②所示,在x′轴上取点B′,E′,使得O′B′=OB,O′E′=OE;在y′轴上取一点D,使得O′D′=OD;过E′作E′C′∥y′轴,使E′C′=EC.(3)连接B′C′,C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图③所示,四边形O′B′C′D′就是所求的直观图.10.如图,△A′B′C′是水平放置的平面图形的斜二测直观图,作出其原图形.解:画法:(1)如图②,画直角坐标系xOy,在x轴上取OA=O′A′,即CA=C′A′;(2)在图①中,过B′作B′D′∥y′轴,交x′轴于D′,在图②中,在x轴上取OD=O′D′,过D作DB∥y轴,并使DB=2D′B′.(3)连接AB,BC,则△ABC即为△A′B′C′原来的图形,如图②.二、综合能力提升1.如图所示为某一平面图形的直观图,则此平面图形可能是下图中的()解析:选A由直观图知,原四边形一组对边平行且不相等,为梯形,且梯形两腰不能与底垂直.2.如图所示,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是()A.2B.1C.D.4解析:选C在△AOB中,OB=O′B′=1,OA=2O′A′=2,且∠AOB=90°,S△AOB...