上海市普陀区2015届高考数学三模试卷(文科)一、填空题(本大题满分56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中.每个空格填对得4分,填错或不填在正确的位置一律得零分.1.(4分)复数z=i(i+1)(i为虚数单位)的共轭复数是.2.(4分)已知幂函数y=f(x)图象过点(2,),则该幂函数的值域是.3.(4分)设向量,,则向量在向量方向上的投影为.4.(4分)已知函数f(x)=,则不等式f(x)>0的解集为.5.(4分)若二元一次线性方程组无解,则实数a的值是.6.(4分)若0≤x≤,则函数y=cos(x﹣)sin(x+)的最大值是.7.(4分)已知圆锥底面半径与球的半径都是1cm,如果圆锥的体积与球的体积恰好也相等,那么这个圆锥的侧面积是cm2.8.(4分)已知(x﹣m)7=a0+a1x+a2x2+…+a7x7的展开式中x4的系数是﹣35,则m=;a1+a2+a3+…+a7=.9.(4分)已知抛物线y2=4x的焦点为F,准线为l,过抛物线上一点P作PE⊥l于E,若直线EF的一个方向向量为(1,),则|PF|=.10.(4分)已知双曲线的左、右焦点分别为F1、F2,P为C的右支上一点,且的面积等于.11.(4分)函数f(x)是定义在实数集R上的不恒为零的偶函数,f(﹣1)=1,且对任意实数x都有xf(x+1)=(x+1)f(x),则f(0)+f(1)+f(2)+…+f的值是.12.(4分)若矩阵的元素为随机从1、2、4、8中选取的4个不同数值,则对应的行列式的值为正数的概率为.113.(4分)设x,y满足约束条件:若目标函数z=ax+by(a>0,b>0)的最大值为2,则的最小值为.14.(4分)已知集合An={a1,a2,…,an),aj=0或1,j=1,2,…,n(n≥2)},对于U,V∈An,d(U,V)表示U和V中相对应的元素不同的个数,若给定U∈A6,则所有的d(U,V)和为.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)“a+b>0”是“任意的x∈[0,1],ax+b>0恒成立”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件16.(5分)若•+||2=0,则△ABC为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形17.(5分)函数y=ln|x﹣1|的图象与函数y=﹣cosπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.6B.5C.4D.318.(5分)已知x、y均为实数,记max{x,y}=,min{x,y}=.若i表示虚数单位,且a=x1+y1i,b=x2+y2i,x1,y1,x2,y2∈R,则()A.min{|a+b|,|a﹣b|}≤min{|a|,|b|}B.max{|a+b|,|a﹣b|}≤max{|a|,|b|}C.min{|a+b|2,|a﹣b|2}≥|a|2+|b|2D.max{|a+b|2,|a﹣b|2}≥{|a|2+|b|2三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)已知函数f(x)=.(1)求函数f(x)的零点,并求反函数f﹣1(x);(2)设g(x)=2log2,若不等式f﹣1(x)≤g(x)在区间[,]上恒成立,求实数k的范围.20.(14分)如图,已知正四棱柱ABCD﹣A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F.2(1)求证:A1C⊥平面BDE;(2)求三棱锥C﹣BDE的体积.21.(14分)如图,某污水处理厂要在一个矩形ABCD的池底水平铺设污水净化管道(直角△EFG,E是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口E是AB的中点,F,G分别落在AD,BC上,且AB=20m,AD=10m,设∠GEB=θ.(1)试将污水管道的长度l表示成θ的函数,并写出定义域;(2)当管道长度l为何值时,污水净化效果最好,并求此时管道的长度.22.(16分)对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q(p≠0)对于任意的n∈N*都成立,我们称这个数列{cn}是“M类数列”.(1)若an=2n,bn=3.2n,n∈N*,判断数列{an},{bn}是否为“M类数列”,并说明理由;(2)若数列{an}是“M类数列”,则数列{an+an+1}、{an•an+1}是否一定是“M类数列”,若是的,加以证明;若不是,说明理由;(3)若数列{an}满足:a1=1,an+an+1=3.2n(n∈N*),设数列{an}的前n项和为Sn,求Sn的...