课时作业33等比数列一、选择题1.已知等比数列{an}中,a4=4,则a2·a6等于()A.4B.8C.16D.32解析:易知a2·a6=a=16.答案:C2.在等比数列{an}中,若a4=2,a5=5,则数列{lgan}的前8项和等于()A.6B.5C.4D.3解析:因为a4=2,a5=5,所以a4·a5=10,所以lga1+lga2+…+lga7+lga8=lg(a1a2·…·a8)=lg(a1a8)4=lg(a4a5)4=4lg10=4.答案:C3.已知等比数列{an}中,a1>0,则“a1
0,所以q3>1,即q>1,故a30,所以q2>1,即q<-1或q>1,所以“a10,n∈N*,且a3·a2n-3=22n(n≥2),则当n≥1时,log2a1+log2a2+…+log2a2n-1=________.解析:由等比数列的性质,得a3·a2n-3=a=22n,从而得an=2n,∴log2a1+log2a2+…+log2a2n-1=log2[(a1a2n-1)·(a2a2n-2)·…·(an-1an+1)an]=log22n(2n-1)=n(2n-1)=2n2-n.答案:2n2-n9.在各项均为正数的等比数列{an}中,已知a2a4=16,a6=32,记bn=an+an+1,则数列{bn}的前5项和S5为________.解析:设数列{an}的公比为q,由a=a2a4=16得,a3=4,即a1q2=4,又a6=a1q5=32,解得a1=1,q=2,所以an=a1qn-1=2n-1,bn=an+an+1=2n-1+2n=3·2n-1,所以数列{bn}是首项为3,公比为2的等比数列,所以S5==93.答案:93三、解答题10.(2016·新课标全国卷Ⅲ)已知各项都为正数的数列{an}满足a1=1,a-(2an+1-1)an-2an+1=0.(Ⅰ)求a2,a3;(Ⅱ)求{an}的通项公式.解:(Ⅰ)由题意可得a2=,a3=.(Ⅱ)由a-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1).因为{an}的各项都为正数,所以=.故{an}是首项为1,公比为的等比数列,因此an=.11.(2016·天津卷)已知{an}是等比数列,前n项和为Sn(n∈N*),且-=,S6=63.(Ⅰ)求{an}的通项公式;(Ⅱ)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(-1)nb}的前2n项和.解:(Ⅰ)设数列{an}的公比为q.由已知,有-=,解得q=2,或q=-1.又由S6=a1·=63,知q≠-1,所以a1·=63,得a1=1,所以an=2n-1.(Ⅱ)由题意,得bn=(log2an+log2an+1)=(log22n-1+log22n)=n-,即{bn}是首项为,公差为1的等差数列.设数列{(-1)nb}的前n项和为Tn,则T2n=(-b+b)+(-b+b)+…+(-b+b)=b1+b2+b3+b4+…+b2n-1+b2n==2n2.21.数列{an}满足:an+1=λan-1(n∈N*,λ∈R且λ≠0),若数列{an-1}是等比数列,则λ的值等于()A.1B.-1C.D.2解析:由an+1=λan-1,得an+1-1=λan-2=λ.由于数列{an-1}是等比数列,所以=1,得λ=2.答案:D2.(2017·福建模拟)已知等比数列{an}的各项均为正数且公比大于1,前n项积为...