电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 阶段质量检测(二)圆锥曲线与方程(含解析)苏教版选修2-1-苏教版高二选修2-1数学试题VIP免费

高中数学 阶段质量检测(二)圆锥曲线与方程(含解析)苏教版选修2-1-苏教版高二选修2-1数学试题_第1页
1/7
高中数学 阶段质量检测(二)圆锥曲线与方程(含解析)苏教版选修2-1-苏教版高二选修2-1数学试题_第2页
2/7
高中数学 阶段质量检测(二)圆锥曲线与方程(含解析)苏教版选修2-1-苏教版高二选修2-1数学试题_第3页
3/7
阶段质量检测(二)圆锥曲线与方程[考试时间:120分钟试卷总分:160分]题号一二总分151617181920得分一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上)1.(江苏高考)双曲线-=1的两条渐近线的方程为________________________.2.抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是________.3.方程+=1表示焦点在x轴上的椭圆,则a的取值范围是_____________.4.(辽宁高考)已知F为双曲线C:-=1的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为________.5.设点P是双曲线-=1(a>0,b>0)与圆x2+y2=2a2的一个交点,F1,F2分别是双曲线的左、右焦点,且PF1=3PF2,则双曲线的离心率为________.6.已知动圆P与定圆C:(x+2)2+y2=1相外切,又与定直线l:x=1相切,那么动圆的圆心P的轨迹方程是____________________________.7.已知双曲C1=-=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐进线的距离为2,则抛物线C2的方程为________________________.8.过抛物线x2=8y的焦点F作直线交抛物线于P1(x1,y1),P2(x2,y2)两点,若y1+y2=8,则P1P2的值为________.9.椭圆+=1的右焦点到直线y=x的距离是________.10.已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若AB=10,BF=8,cos∠ABF=,则C的离心率为________.11.(新课标全国卷Ⅰ改编)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为________________________.12.抛物线y2=12x截直线y=2x+1所得弦长等于__________________________.13.以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同的点,顺次连结这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为________.14.给出如下四个命题:①方程x2+y2-2x+1=0表示的图形是圆;②椭圆+=1的离心率e=;③抛物线x=2y2的准线的方程是x=-;④双曲线-=-1的渐近线方程是y=±x.其中所有不正确命题的序号是________.二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)求与椭圆+=1有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.116.(本小题满分14分)已知抛物线C:y2=4x的焦点为F,过点F的直线l与C相交于A,B两点,若|AB|=8,求直线l的方程.17.(本小题满分14分)如图,F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(1)求椭圆C的离心率;(2)已知△AF1B的面积为40,求a,b的值.18.(浙江高考)(本小题满分16分)如图,点P(0,-1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程.9.(陕西高考)(本小题满分16分)已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.(1)求动点M的轨迹C的方程;(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求直线m的斜率.20.(湖南高考)(本小题满分16分)过抛物线E:x2=2py(p>0)的焦点F作斜率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2,l1与E相交于点A,B,l2与E相交于点C,D,以2AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(1)若k1>0,k2>0,证明:FM�·FN�<2p2;(2)若点M到直线l的距离的最小值为,求抛物线E的方程.答案1.解析:令-=0,解得y=±x.答案:y=±x2.解析:因为抛物线的焦点坐标为(1,0),而双曲线的渐近线方程为y=±x,所以所求距离为=.答案:3.解析:由题意得解之得a<,且a≠0,即a的取值范围是(-∞,0)∪.答案:4.解析:由题意因为PQ过双曲线的右焦点(5,0),所以P,Q都在双曲线的右支上,则有FP-PA=6,FQ-QA=6,两式相加,利用双曲线的定义得FP+FQ=28,所以△PQF的周长为FP+FQ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 阶段质量检测(二)圆锥曲线与方程(含解析)苏教版选修2-1-苏教版高二选修2-1数学试题

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部