天津市南开中学2015届高考数学二项式定理练习(含解析)1.若二项式7)2(xax的展开式中31x的系数是84,则实数a()A.2B.54C.1D.421.5122xy的展开式中32yx的系数是()A.20B.5C.5D.202.8xyyx的展开式中22xy的系数为.3.8xyxy的展开式中27xy的系数为________.(用数字填写答案)14.若26()baxx的展开式中3x项的系数为20,则22ba的最小值.5.在46)1()1(yx的展开式中,记nmyx项的系数为),(nmf,则)3,0(2,1()1,2()0,3(ffff)()A.45B.60C.120D.2106.设*nN,则12321666nnnnnnCCCC__________.12211671616666nnnnnnnnnCCCC所求为:1716n7.设m为正整数,2mxy展开式的二项式系数的最大值为21maxy,展开式的二项式系数的最大值为b.若137ab,则m().A.5B.6C.7D.82由题设,21221!!1!C13211372!7C1!!mmmmmmmbmabmammm,解得6m,选B.8.设二项式60axax的展开式中3x的系数为A,常数项为B,若4BA,则a的值是__________.由616CkkkTx36226Ckkkkkaxax.故242466CCAaBa,,由4BA,解得24a,又0a,所以2a.9.设aZ,且013a,若201251a能被13整除,则a().A.0B.1C.11D.12511341,于是201220122012201220120511341C1341131kkkkM,其中2011201101341kkkMZ.201251131aMa被13整除,则1a应为13的倍数.又013a,,故12a,选D.10.若将函数5fxx表示为250125111fxaaxaxax,其中0125aaaa,,,,为实数,则3a.2345501234511111aaxaxaxaxaxx为恒等式,两边三次求导得2234532143215431543aaxaxx,令1x得2336543110aa,.11.设21221012211xaaxaxax,则1011aa__________.由21121C1kkkkTx,得111111102121C1Ca,101010112121C1Ca,故101010112121CC0aa.12.若2009200901200912xaaxaxxR,则20091222009222aaa的值为().A.2B.0C.1D.2取12x,得20092009120220091122222aaaa;取0x,得01a.故所求为1.选C.313.若1nxx的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为_________.根据题设,26CCnn,所以8n,则展开式的第1r项为882181CCrrrrrrnTxxx,令822r,得5r,所以展开式中21x项的系数为5388CC56.14.512axxxx的展开式中各项系数的和为2,则该展开式中常数项为().A.40B.20C.20D.40令1x,由题设有51212a,故1a.所以,原式5112xxxx5225211xxxx52261121xxx.计算522121xx展开式中6x的系数,需注5221x展开式中含4x与含6x这两项.又532232222232551211C21C21xxxxx,故6x系数为322355C2C240.选D.【解法研究】解答本题的另一个途径是,由55511111222xxxxxxxxxx5522462121xxxx,故只需求出5221x的展开式中4x的系数与6x的系数,进而求和即可.15.设函数6100xxfxxxx,,,,则当0x时,ffx表达式的展开式中常数项为().A.20B.20C.15D.15当0x时,0fxx,所以666111ffxfxxxfxxx,设61xx的展开4...