滚动检测05向量数列不等式和立体几何的综合(测试时间:120分钟满分:150分)一、选择题(共12小题,每题5分,共60分)1.【2018广西柳州两校联考】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和俯视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.【答案】C【解析】该几何体为正方体截去一部分后的四棱锥P﹣ABCD,如图所示,该几何体的俯视图为C.故选:C.2.等比数列的前项和为,则()A.B.C.D.【答案】C【解析】试题分析:.考点:等比数列.3.【2018江西新余一中四模】如图,已知,若点满足,,(),则()A.B.C.D.【答案】D4.若对于任意的,关于的不等式恒成立,则的最小值为()A.B.C.D.【答案】A【解析】试题分析:设,根据已知条件知:,该不等式表示的平面区域如图所示,设,所以,所以该方程表示以原点为圆心,半径为的圆,原点到直线的距离为,所以该圆的半径,解得,故选A.考点:简单的线性规划求最值.5.设是互不垂直的两条异面直线,则下列命题成立的是()A.存在唯一直线,使得,且B.存在唯一直线,使得,且C.存在唯一平面,使得,且D.存在唯一平面,使得,且【答案】C【解析】考点:空间点线面位置关系.6.在三棱锥中,侧面、侧面、侧两两互相垂直,且,设三棱锥的体积为,三棱锥的外接球的体积为,则()A.B.C.D.【答案】A【解析】试题分析:由侧面、侧面、侧两两互相垂直知两两相互垂直,不妨设,,,则.三棱锥的外接球的直径,所以,所以,故选A.考点:1、三棱锥的外接球;2、三棱锥与球的体积.7.【2018辽宁沈阳四校联考】正三角形边长为2,将它沿高翻折,使点与点间的距离为,此时四面体外接球表面积为()A.B.C.D.【答案】A外接球的表面积为:4πr2=7π故选:A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.8.平行四边形中,,点在边上,则的取值范围是()A.B.C.D.【答案】A【解析】考点:平面向量的数量积的运算.【方法点睛】本题主要考查的是平面向量的数量积的运算,建模思想,二次函数求最值,数形结合,属于中档题,先根据向量的数量积的运算,求出,再建立坐标系,得,构造函数,利用函数的单调性求出函数的值域,问题得以解决,因此正确建立直角坐标系,将问题转化成二次函数最值问题是解题的关键.9.设成等比数列,其公比为3,则的值为()A.1B.C.D.【答案】B【解析】试题分析:考点:等比数列通项公式10.【2018江西新余一中四模】已知数列满足,且(),则的整数部分是()A.0B.1C.2D.3【答案】C【解析】(),,则的整数部分为故选点睛:本题考查数列的综合运用,需根据条件利用裂项法构造新的数列,运用裂项求和得出和的结果,然后推导出其整数部分,注意条件的运用及转化11.如图,在正四棱锥(底面为正方形,顶点在底面的射影为底面的中心)S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论中恒成立的个数为()(1)EP⊥AC;(2)EP∥BD;(3)EP∥面SBD;(4)EP⊥面SAC.A.1个B.2个C.3个D.4个【答案】B【解析】考点:空间中直线与平面之间的位置关系12.如图,在棱长为1的正方体的对角线上取一点,以为球心,为半径作一个球,设,记该球面与正方体表面的交线的长度和为,则函数的图像最有可能的是()【答案】B【解析】试题分析:球面与正方体的表面都相交,我们考虑三个特殊情形:(1)当;(2)当;(3)当.(1)当时,以为球心,为半径作一个球,该球面与正方体表面的交线弧长为,且为函数的最大值;(2)当时,以为球心,为半径作一个球,根据图形的相似,该球面与正方体表面的交线弧长为(1)中的一半;(3)当时,以为球心,为半径作一个球,其弧长为,且为函数的最大值,对照选项可得B正确.考点:函...