电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第五篇 数列及其应用 专题5.4 数列求和及数列的综合应用练习(含解析)-人教版高三全册数学试题VIP免费

高考数学一轮复习 第五篇 数列及其应用 专题5.4 数列求和及数列的综合应用练习(含解析)-人教版高三全册数学试题_第1页
1/12
高考数学一轮复习 第五篇 数列及其应用 专题5.4 数列求和及数列的综合应用练习(含解析)-人教版高三全册数学试题_第2页
2/12
高考数学一轮复习 第五篇 数列及其应用 专题5.4 数列求和及数列的综合应用练习(含解析)-人教版高三全册数学试题_第3页
3/12
专题5.4数列求和及数列的综合应用【考试要求】1.熟练掌握等差、等比数列的前n项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.【知识梳理】1.特殊数列的求和公式(1)等差数列的前n项和公式:Sn==na1+d.(2)等比数列的前n项和公式:Sn=2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.(4)倒序相加法如果一个数列{an}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑an与an+1(或者相邻三项等)之间的递推关系,或者Sn与Sn+1(或者相邻三项等)之间的递推关系.【微点提醒】1.1+2+3+4+…+n=.2.12+22+…+n2=.13.裂项求和常用的三种变形(1)=-.(2)=.(3)=-.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{an}为等比数列,且公比不等于1,则其前n项和Sn=.()(2)当n≥2时,=(-).()(3)求Sn=a+2a2+3a3+…+nan时只要把上式等号两边同时乘以a即可根据错位相减法求得.()(4)若数列a1,a2-a1,…,an-an-1是首项为1,公比为3的等比数列,则数列{an}的通项公式是an=.()【答案】(1)√(2)√(3)×(4)√【解析】(3)要分a=0或a=1或a≠0且a≠1讨论求解.【教材衍化】2.(必修5P47B4改编)数列{an}中,an=,若{an}的前n项和为,则项数n为()A.2018B.2019C.2020D.2021【答案】B【解析】an==-,Sn=1-+-+…+-=1-==,所以n=2019.3.(必修5P56例1改编)等比数列{an}中,若a1=27,a9=,q>0,Sn是其前n项和,则S6=________.【答案】【解析】由a1=27,a9=知,=27·q8,又由q>0,解得q=,所以S6==.【真题体验】4.(2018·东北三省四校二模)已知数列{an}满足an+1-an=2,a1=-5,则|a1|+|a2|+…+|a6|=()A.9B.15C.18D.30【答案】C【解析】由题意知{an}是以2为公差的等差数列,又a1=-5,所以|a1|+|a2|+…+|a6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18.5.(2019·北京朝阳区质检)已知数列{an},{bn}的前n项和分别为Sn,Tn,bn-an=2n+1,且Sn+Tn=2n+1+n2-2,则2Tn=________________.【答案】2n+2+n(n+1)-42【解析】由题意知Tn-Sn=b1-a1+b2-a2+…+bn-an=n+2n+1-2,又Sn+Tn=2n+1+n2-2,所以2Tn=Tn-Sn+Sn+Tn=2n+2+n(n+1)-4.6.(2019·河北“五个一”名校质检)若f(x)+f(1-x)=4,an=f(0)+f+…+f+f(1)(n∈N*),则数列{an}的通项公式为________.【答案】an=2(n+1)【解析】由f(x)+f(1-x)=4,可得f(0)+f(1)=4,…,f+f=4,所以2an=[f(0)+f(1)]++…+[f(1)+f(0)]=4(n+1),即an=2(n+1).【考点聚焦】考点一分组转化法求和【例1】(2019·济南质检)已知在等比数列{an}中,a1=1,且a1,a2,a3-1成等差数列.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=2n-1+an(n∈N*),数列{bn}的前n项和为Sn,试比较Sn与n2+2n的大小.【答案】见解析【解析】(1)设等比数列{an}的公比为q, a1,a2,a3-1成等差数列,∴2a2=a1+(a3-1)=a3,∴q==2,∴an=a1qn-1=2n-1(n∈N*).(2)由(1)知bn=2n-1+an=2n-1+2n-1,∴Sn=(1+1)+(3+2)+(5+22)+…+(2n-1+2n-1)=[1+3+5+…+(2n-1)]+(1+2+22+…+2n-1)=·n+=n2+2n-1. Sn-(n2+2n)=-1<0,∴Sn

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第五篇 数列及其应用 专题5.4 数列求和及数列的综合应用练习(含解析)-人教版高三全册数学试题

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群