总结排列组合题型一.直接法1.特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。分析:(1)个位和千位有5个数字可供选择25A,其余2位有四个可供选择24A,由乘法原理:25A24A=2402.特殊位置法(2)当1在千位时余下三位有35A=60,1不在千位时,千位有14A种选法,个位有14A种,余下的有24A,共有14A14A24A=192所以总共有192+60=252二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462AAA=252例2有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352AC个,其中0在百位的有2242C22A个,这是不合题意的。故共可组成不同的三位数333352AC-2242C22A=432(个)三.插空法当需排元素中有不能相邻的元素时,宜用插空法。例3在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019AA=100中插入方法。四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。例44名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A种排法,而男生之间又有44A种排法,又乘法原理满足条件的排法有:44A×44A=576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种(3324AC)2.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129AC)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C其余的就是19所学校选28天进行排列)五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有711C种练习1.(a+b+c+d)15有多少项当项中只有一个字母时,有14C种(即而指数只有15故01414CC。当项中有2个字母时,有24C而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,114C即24C114C当项中有3个字母时34C指数15分给3个字母分三组即可21434CC当项种4个字母都在时31444CC四者都相加即可.练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法(216C)3.不定方程X1+X2+X3+⋯+X50=100中不同的整数解有(4999C)六.平均分堆问题例66本不同的书平均分成三堆,有多少种不同的方法分析:分出三堆书(a1,a2),(a3,a4),(a5,a6)由顺序不同可以有33A=6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有33222426ACCC=15种练习:1.6本书分三份,2份1本,1份4本,则有不同分法2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。七.合并单元格解决染色问题3,52,4例7(全国卷(文、理))如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有种(以数字作答)。分析:颜色相同的区域可能是2、3、4、5.下面分情况讨论:(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素①③⑤的全排列数A44(ⅱ)当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得A44种着色法.(ⅲ)当2、4与3、5分别同色时,将2、4;3、5分别合并,这样仅有三个单元格①从4种颜色中选3种来着色这三个单元格,计有...