1高能气体压裂技术高能气体压裂(HighEnergyGasFracture,简称HEGF)是利用火药或火箭推进剂在井筒中快速燃烧产生的大量的高温高压气体在产层上压出辐射状多裂缝体系,改善近井地带的渗透性能,从而增加油气井产量和注水井注入量的一项增产措施。前苏联把高能气体压裂称为热气化学处理,在美国也称作脉冲压裂、多裂缝压裂。一.高能气体压裂工艺技术1.高能气体压裂概况美国高能气体压裂是从一百多年前的井筒爆炸方法演变而来,本世纪70年代中期后,美国、前苏联等国家对爆炸压裂失败的机理作了深入的探讨而发展了高能气体压裂并在80年代中期使该项技术趋于成熟。80年带中期,西安石油学院开始从事高能气体压裂的研究,吸取和借鉴了国外的一些先进成果,已研制和开发出自己的产品系列,如压裂弹、测试仪、设计软件等。高能气体压裂不同于爆炸压裂和水力压裂。爆炸压裂在井筒中产生的爆轰波作用于井壁,快速的压力脉冲把井筒周围很小范围的岩石破碎,不能形成多裂缝体系。水力压裂是通过压裂车组从地面注入压裂液在高于岩石破裂压力下将地层压开而形成一条宽而长的裂缝,这种裂缝长度从几十米到上千米不等,裂缝垂直于岩石最小主应力方向。高能气体压裂火药产生的压力脉冲比爆炸压裂平缓而又远远快于水力加载,因而在井壁形成多裂缝体系,但裂缝长度一般小于10米(液体药高能气体压裂裂缝可超过30米),所以可用于改善近井地带的渗流环境(解堵或改造地层)。三种压裂的区别见下表。从表中看出,由于升压时间及加载速率的不同,高能气体压裂是明显区别与爆炸压裂和水力压力的增产措施。表1三种压裂方法的主要参数压裂方法峰值压力(MPa)升压时间(s)加载速率(MPa/s)总过程(s)爆炸压裂>10410-7>10810-6高能气体压裂10210-3102~10610-2~10水力压裂10102<10-11042.高能气体的获得高能气体是通过固体药或液体药的快速燃烧产生的。固体药有火药及火箭推进剂。常用的火药有硝化棉和炮药,硝化棉是致密的硝化纤维和极少量残留溶液组成,炮药是硝化纤维在不易挥发溶剂(如硝化甘油)中的固体溶液,它比硝化棉的能量高,火药的燃烧时2间以ms计。常温固体药每公斤产气量在1028升左右,爆燃温度不超过2600oC;高温固体药每公斤产气量不超过880升,爆燃温度在3000oC以上。液体药由氧化剂、燃料及溶液组成,主要成分是硝酸铵、甘油和水,其燃烧时间以s计。用液体药压裂后,其裂缝可达25~50米,可与一般的水力压裂媲美。根据上述特点,可以制成不同的压力发生器。(1)有壳压力发生器(有壳弹)该装置的药柱外面有金属外壳保护,施工时用电缆传输至预定位置,地面加电引燃。由于有金属外壳,每米装药量仅3~4公斤,总装药量不超过40公斤,现以很少使用。(2)无壳压力发生器该发生器的外面无沉重的金属壳体,直接用中心铝管和中接头将药柱串联而成,每米装药量可达12公斤,总装药量可多达100~120公斤。也可根据油管的内径制造出过油管无壳压力发生器,即它可通过油管用电缆直接下到目的层而不用起出油管。(3)液体火药它是将配好的液体直接注入目的层段,投入固体药让其静止反应引燃或地面加电点火引燃而释放高能气体。3.高能气体压裂施工工艺根据压裂药下入及点火方式的不同,高能气体压裂工艺分为三种:(1)电缆下入高能气体发生器、地面加电引燃的工艺。用中心铝管及电缆将压裂药柱串接在一起,中心铝管内装点火药柱,铝管上端装点火头,最下部药柱底端的铝管端部用堵头(堵头可承受药柱重量)拧死,电缆接在点火头上,用电缆车将其下至预定层位(磁定位),地面加电引燃点火头,点火头引燃铝管内引火药,加热中心管,再引燃药柱。(2)油管下入高能气体发生器,投棒撞击点火引燃的工艺用中心铝管、中接头将压裂药柱串接在一起,中心管内装点火药柱,最下端用堵头拧死,最上端装击针座,击针座下面是发火药,用变扣将击针座连接在油管的末端,下到目的层后,地面投棒将压裂药柱引燃。(3)用固体药点火引燃液体药的工艺从地面按比例配制设计需要量液体药,然后将液体药注入管柱内,用顶替液将液体替至目的层段,然后上提管柱到一定高度,从井口投入固体点火药等待其燃烧,或者是提出管串...