3.3几何概型课时目标1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.1.几何概型的定义设D是一个________的区域(例如线段、平面图形、立体图形等).每个基本事件可以视为从________内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点,这时,事件A发生的概率与d的测度(长度、________、________等)成正比,与d的形状和位置________.我们把满足这样条件的概率模型称为几何概型.2.在几何概型中,事件A的概率计算公式为P(A)=____________________.一、填空题1.用力将一个长为3米的米尺拉断,假设该米尺在任何一个部位被拉断是等可能的,则米尺的断裂处恰在米尺的1米到2米刻度处的概率为________.2.如图,边长为2的正方形内有一内切圆.在图形上随机撒一粒黄豆,则黄豆落到圆内的概率是________.3.在1L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL,则含有麦锈病种子的概率是________.4.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为________.5.在区间[-1,1]上任取两数x和y,组成有序实数对(x,y),记事件A为“x2+y2<1”,则P(A)=______________________________________________________________.6.有四个游戏盘,如下图所示,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖机会大,他应当选择的游戏盘为________.(填序号)7.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时看到的是绿灯的概率是________.8.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为________.9.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为________.二、解答题10.过等腰Rt△ABC的直角顶点C在∠ACB内部随机作一条射线,设射线与AB相交于点D,求AD