高考数学常用公式及结论1.熟悉这些解题小结论,启迪解题思路、探求解题佳径,防止解题易误点的产生,对提升数学成绩将会起到很大的作用。2.所有定义、概念、公式、解题方法都须熟记,且应在弄清它们的来龙去脉后再熟记。1.元素与集合的关系:UxAxCA,UxCAxA.2.德摩根公式:();()UUUUUUCABCACBCABCACB.3.包含关系ABAABBUUABCBCAUACBUCABR4.容斥原理()()cardABcardAcardBcardAB()()cardABCcardAcardBcardCcardAB()()()()cardABcardBCcardCAcardABC.5.集合12{,,,}naaa的子集个数共有2n个;真子集有2n-1个;非空子集有2n-1个;非空的真子集有2n-2个.6.二次函数的解析式的三种形式(1)一般式2()(0)fxaxbxca;(2)顶点式2()()(0)fxaxhka;(3)两根式12()()()(0)fxaxxxxa.7.解连不等式()NfxM常有以下转化形式:()NfxM[()][()]0fxMfxN;8.闭区间上的二次函数的最值二次函数)0()(2acbxaxxf在闭区间qp,上的最值只能在abx2处及区间的两端点处取得,具体如下:(1)当a>0时,若qpabx,2,则minmaxmax()(),()(),()2bfxffxfpfqa;用心爱心专心若qpabx,2,maxmax()(),()fxfpfq,minmin()(),()fxfpfq.(2)当a<0时,若qpabx,2,则min()min(),()fxfpfq;若qpabx,2,则max()max(),()fxfpfq,min()min(),()fxfpfq.9.一元二次方程的实根分布设2()fxxpxq,则(1)方程0)(xf在区间),(m内有根的充要条件为()0fm或2402()0pqpmfm.(2)方程0)(xf在区间(,)mn内有根的充要条件为()()0fmfn或2()0()0402fmfnpqpmn或()0()02fmfnpmn或()0()02fnfmpmn.(3)方程0)(xf在区间(,)n内有根的充要条件为()0fn或2402()0pqpnfn.10.定区间上含参数的二次不等式恒成立的条件依据:(1)在给定区间),(的子区间L(形如,,,,,不同)上含参数的二次不等式(,)0fxt(t为参数)恒成立的充要条件是min(,)0()fxtxL.(2)在给定区间),(的子区间上含参数的二次不等式(,)0fxt(t为参数)恒成立的充要条件是(,)0()manfxtxL.(3)42()0(0)fxaxbxca恒成立的充要条件是020bac或20240babac.用心爱心专心11.真值表pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假12.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有n个至多有(1n)个小于不小于至多有n个至少有(1n)个对所有x,成立存在某x,不成立p或qp且q对任何x,不成立存在某x,成立p且qp或q13.四种命题的相互关系原命题互逆逆命题若p则q若q则p互互互为为互否否逆逆否否否命题逆否命题若非p则非q互逆若非q则非p14.充要条件(1)充分条件:若pq,则p是q充分条件.(2)必要条件:若qp,则p是q必要条件.(3)充要条件:若pq,且qp,则p是q充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.15.函数的单调性(1)设2121,,xxbaxx那么1212()()()0xxfxfxbaxfxxxfxf,)(0)()(2121在上是增函数;1212()()()0xxfxfxbaxfxxxfxf,)(0)()(2121在上是减函数.用心爱心专心(2)设函数)(xfy在某个区间内可导,如果0)(xf,则)(xf为增函数;如果0)(xf,则)(xf为减函数.16.如果函数)(xf和)(xg都是减函数,则在公共定义域内,和函数)()(xgxf也是减函数;如果函数)(ufy和)(xgu在其对应的定义域上都是减函数,则复合函数)]([xgfy是增函数.17.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果...