第1讲基础小题部分一、选择题1.(2018·合肥质量检测)等差数列{an}的前n项和为Sn,且S3=6,S6=3,则S10=()A.B.0C.-10D.-15解析:由题意,得解得所以S10=10a1+45d=-15,故选D.答案:D2.等比数列{an}中,a5=6,则数列{log6an}的前9项和等于()A.6B.9C.12D.16解析:因为a5=6,所以log6a1+log6a2+…+log6a9=log6(a1·a2·…·a9)=log6a=9log66=9,故选B.答案:B3.已知等比数列{an}中,a3=2,a4a6=16,则的值为()A.2B.4C.8D.16解析:a5=±=±=±4,因为q2=>0,所以a5=4,q2=2,则=q4=4.答案:B4.已知数列{an}是公差为3的等差数列,且a1,a2,a5成等比数列,则a10等于()A.14B.C.D.32解析:由题意可得a=a1·a5,即(a1+3)2=a1(a1+4×3),解之得a1=,故a10=+(10-1)×3=,故选C.答案:C5.(2018·洛阳第一次统考)等差数列{an}为递增数列,若a+a=101,a5+a6=11,则数列{an}的公差d等于()A.1B.2C.9D.10解析:依题意得(a1+a10)2-2a1a10=(a5+a6)2-2a1a10=121-2a1a10=101,所以a1a10=10,又a1+a10=a5+a6=11,a1
f(x)g′(x),且f(x)=axg(x)(a>0,且a≠1),+=.若数列{}的前n项和大于62,则n的最小值为()A.8B.7C.6D.9解析:由[]′=>0,知在R上是增函数,即=ax为增函数,所以a>1.又因为a+=,所以a=2或a=(舍).数列{}的前n项和Sn=21+22+…+2n==2n+1-2>62,即2n>32,所以n>5.答案:C12.已知在正项等比数列{an}中,a3+a8=4,则log2a1-log2+log2a9-log2的最大值为()A.2B.4C.8D.16解析:log2a1-log2+log2a9-log2=(log2a1+log2a9)+(log2a2+log2a10)=log2a+log2a=2(log2a5+log2a6)=2log2(a5·a6),因为{an}是正项等比数列,故a5·a6=a3·a8≤=4,当且仅当a3=a8=2时等号成立,故log2a1-log2+log2a9-log2=2log2(a5·a6)≤4.答案:B二、填空题13.设数列{an}满足:a1=1,a2=3,且2nan=(n-1)·an-1+(n+1)an+1,则a20的值是________.解析:因为2nan=(n-1)an-1+(n+1)an+1,所以数列{nan}是以a1=1为首项,2a2-a1=5为公差的等差数列,所以20a20=1+5×19=96,所以a20=.答案:14.(2018·太原模拟)已知Sn是等差数列{an}的前n项和,2(a1+a3+a5)+3(a8+a10)=36,则S11=______.解析:设等差数列{an}的公差为d,因为2(a1+a3+a5)+3(a8+a10)=36,所以12a1+60d=36,即a1+5d=3,所以a6=3,所以S11===11a6=33.答案:3315.设数列{an}的前n项和为Sn,且a1=1,an+an+1=(n=1,2,3,…),则S2n+3=________.解析:依题意得S2n+3=a1+(a2+a3)+(a4+a5)+…+(a2n+2+a2n+3)=1+++…+==(1-).答案:(1-)16.数列{an}满足an+an+1=(n∈N*),a2=2,Sn是数列{an}的前n项和,则S2017=________.解析:因为an+an+1=(n∈N*),所以a1=-a2=-2,a2=2,a3=-2,a4=2,…,故a2n=2,a2n-1=-2,所以S2017=1009a1+1008a2=1009×(-2)+1008×2=.答案: