2015-2016学年河南省许昌高中、襄城高中、长葛一高等校高二(下)第一次联考数学试卷(理科)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1B.∃x0∉(0,+∞),lnx0=x0﹣1C.∀x∈(0,+∞),lnx≠x﹣1D.∀x∉(0,+∞),lnx=x﹣12.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.数列{an}、{bn}满足bn=2an(n∈N*),则“数列{an}是等差数列”是“数列{bn}是等比数列”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也必要条件4.图中共顶点的椭圆①、②与双曲线③、④的离心率分别为a1、a2、a3、a4,其大小关系为()A.a1<a2<a3<a4,B.a2<a1<a3<a4,C.a1<a2<a4<a3,D.a2<a1<a4<a35.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A.B.C.D.6.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.mB.mC.mD.m7.在三角形ABC中,如果(a+b+c)(b+c﹣a)=3bc,那么A等于()A.30°B.60°C.120°D.150°18.正三棱柱ABC﹣A1B1C1,E,F,G为AB,AA1,A1C1的中点,则B1F与面GEF成角的正弦值()A.B.C.D.9.如图,已知双曲线=1(a>0,b>0)上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,且满足AF⊥BF,设∠ABF=α,且α∈[,],则双曲线离心率e的取值范围为()A.[,2+]B.[,]C.[,]D.[,+1]10.设实数x,y满足,则xy的最大值为()A.B.C.12D.1611.下列命题中,正确命题的个数是()①命题“∃x∈R,使得x3+1<0”的否定是““∀x∈R,都有x3+1>0”.②双曲线﹣=1(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且=0,则此双曲线的离心率为.③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A﹣C)=1,则a、c、b成等比数列.2④已知,是夹角为120°的单位向量,则向量λ+与﹣2垂直的充要条件是λ=.A.1个B.2个C.3个D.4个12.设x∈R,对于使﹣x2+2x≤M成立的所有常数M中,我们把M的最小值1叫做﹣x2+2x的上确界.若a,b∈R+,且a+b=1,则的上确界为()A.﹣5B.﹣4C.D.二、填空题(本大题共4小题,每小题5分,共20分.)13.若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为.14.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,共面,则λ=.15.等差数列{an},{bn}的前n项和分别为Sn、Tn,若=,则=.16.已知a>b,且ab=1,则的最小值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.18.已知命题p:“存在”,命题q:“曲线表示焦点在x轴上的椭圆”,命题s:“曲线表示双曲线”(1)若“p且q”是真命题,求m的取值范围;(2)若q是s的必要不充分条件,求t的取值范围.19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.320.已知抛物线C的顶点为坐标原点,焦点为F(0,1),(1)求抛物线C的方程;(2)过点F作直线l交抛物线于A,B两点,若直线AO,BO分别与直线y=x﹣2交于M,N两点,求|MN|的取值范围.21.设Sn是数列[an}的前n项和,.(1)求{an}的通项;(2)设bn=,求数列{bn}的前n项和Tn.22.已知双曲线x2﹣y2=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围,并求x2﹣x1的最小值;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1•k2是定值吗?证明你的结论.42015-2016学年河南省许昌高中、襄城高中、长葛一高等校高二...