用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()Pxy,及斜率,其求法为:设00()Pxy,是曲线()yfx上的一点,则以P的切点的切线方程为:000()()yyfxxx.若曲线()yfx在点00(())Pxfx,的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为0xx.下面例析四种常见的类型及解法.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()fx,并代入点斜式方程即可.例1曲线3231yxx在点(11),处的切线方程为()A.34yxB.32yxC.43yxD.45yx1解:由2()36fxxx则在点(11),处斜率(1)3kf,故所求的切线方程为(1)3(1)yx,即32yx,因而选B.练习:1.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线()A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交答案B2.已知函数y=f(x)的图像如右图所示,则f′(xA)与f′(xB)的大小关系是()A.f′(xA)>f′(xB)B.f′(xA)