电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

专题四解析几何综合题型分析及解题策略VIP免费

专题四解析几何综合题型分析及解题策略_第1页
1/13
专题四解析几何综合题型分析及解题策略_第2页
2/13
专题四解析几何综合题型分析及解题策略_第3页
3/13
专题四:解析几何综合题型分析及解题策略【命题趋向】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,如08年08年江西理7文7题(5分)是基础题,考查与向量的交汇、08年天津文7题(5分)是基础题,考查圆锥曲线间的交汇、08年08徽理22题(12分)难度中档偏上,考查圆锥曲线与向量、直线与圆锥曲线的综合、08年福建21题(12分)难度中档偏上,考查圆锥曲线与不等式的交汇、08年湖北理19题(12分)中等难度,考查直线、圆与圆锥曲线的综合题、08年江苏21题(12分)中档偏下题,考查解析几何与三角函数的交汇,等等.预计在09年高考中解答题仍会重点考查直线与圆锥曲线的位置关系,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.这体现了考试中心提出的“应更多地从知识网络的交汇点上设计题目,从学科的整体意义、思想含义上考虑问题”的思想.【考试要求】1.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.2.了解线性规划的意义,并会简单的应用.3.掌握圆的标准方程和一般方程,了解参数方程的概念。理解圆的参数方程.4.掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.5.掌握双曲线的定义、标准方程和双曲线的简单几何性质.6.掌握抛物线的定义、标准方程和抛物线的简单几何性质.【考点透视】解析几何是高中数学的重要内容,包括直线和圆与圆锥曲线两部分,而直线和圆单独命为解答题较少,只有极个别的省市高考有出现,而圆锥曲线是解析几何的核心内容,每年在全国及各省市的高考中均出现.主要考查热点:(1)直线的方程、斜率、倾斜角、距离公式及圆的方程;(2)直线与直线、直线与圆的位置关系及对称问题等;(3)圆锥曲线的定义及标准方程;(4)与圆锥曲线有关的轨迹问题;(5)与圆锥曲线有关的最值、定值问题;(6)与平面向量、数列及导数等知识相结合的交汇试题.【典例分析】题型一直线与圆的位置关系此类题型主要考查:(1)判断直线与圆的三种位置关系是:相离、相切、相交;(2)运用三种位置关系求参数的值或取值范围;(3)直线与圆相交时,求解弦长、弦的中点问题及轨迹问题.【例1】若直线3x+4y+m=0=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是_____________.【分析】利用点到直线的距离来解决.【解】圆心为(1,-2),要没有公共点,根据圆心到直线的距离大于半径,得d=|3×1+2×(-4)+m|32+42>r=1,即|m-5|>5,m∈(-∞,0)∪(10,+∞).【点评】解答此类题型的思路有:①判别式法(即方程法),②平面几何法(运用d与r的关系),③数形结合法.由于圆的特殊性(既是中心对称图形又是轴对称),因此解答直线与圆的位置关系时一般不利用判别式法,而利用平面几何法求解,即利用半径r、圆心到直线的距离d的求解.题型二圆锥曲线间相互依存抛物线与椭圆、双曲线的依存关系表现为有相同的焦点、准线重合、准线过焦点等形式,只要对三种圆锥曲线的概念与性质掌握得好,处理这类问题的困难不大.【例2】(2009届大同市高三学情调研测试)设双曲线以椭圆x225+y29=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为()A.±2B.±43C.±34D.±12【分析】根据椭圆的两个端点坐标确定双曲线的焦点坐标,再根据椭圆的焦点得到双曲线的准线方程,由此得到关于双曲线关于a、c的值,进而得到b的值,再进一步求得渐近线的斜率.【解】由椭圆方程知双曲线的焦点为(5,0),即c=5,又同椭圆的焦点得a2c=4,所以a=25,则b=c2-a2=5,故双曲线渐近线的斜率为±ba=±12,故选D.【点评】本题主要考查椭圆与双曲线的标准方程、几何性质及相关几何量之间的相互关系....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

专题四解析几何综合题型分析及解题策略

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部