15--6两小球碰撞模型如图所示,光滑水平面上两个质量分别为m1、m2小球相碰。这种碰撞可分为正碰和斜碰两种,在高中阶段只研究正碰。满足动量守恒和能量守恒:正碰又可分为以下几种类型:1、完全弹性碰撞:碰撞时产生弹性形变,碰撞后形变完全消失,碰撞过程系统的动量和动能均守恒(双动守恒)22221122221121212121VmVmVmVm诱导出:那么v1=v2=特别注意:若m1=m2那么v1=v2=结论:2、完全非弹性碰撞:碰撞后物体粘结成一体,即相互碰撞时产生的形变一点没有恢复,碰撞后相互作用的物体具有共同速度,系统动量守恒,但系统的机械能不守恒,此时损失E损最大。3、非完全弹性碰撞:碰撞时产生的形变有部分恢复,此时系统动量守恒但机械能有部分损失,即0<E损<maxE高中阶段一般不研究.例1.如图,在光滑水平面面上有一质量为m的A球以V0速度与质量为2m的静止B球发生弹性正碰.求碰后两球的速度各是多少?例2.如图,在光滑水平面面上有n个完全相同的小球在一条直线上同向运动.速度大小关系为V1>V2>V3>⋯>Vn,经过一系列的弹性碰撞后,每个小球的速度各是多少?例3.如图,在光滑水平面面上有一质量为m的A球以V0速度与质量为也是m的静止B球和C球依次发生粘合碰撞,求每次碰撞损失的机械能各是多少?例4.如图所示.质量为m的滑块静止在光滑的水平桌面上,滑块的光滑弧面底部与桌面相切,一个质量为m的小球以速度v0向滑块飞来,设小球不会越过滑块,求滑块能获得的最大速度?此后小球做什么运动?例5..如图,在光滑的水平上,依次有质量分别为m、2m、3m、⋯10m的10个小球,排成一直线,彼此有一定的距离.开始时,后面的9个小球是静止的,第一个小球以初速度VO向着第二小球碰去,结果它们先后全部粘合在一起向前运动,由于连续地碰撞,系统损失的机械能为多少?例6.如图2所示,一水平放置的圆环形刚性槽固定在桌面上,槽内嵌放着三个大小相同的刚性小球,它们的质量分别为m1、m2、m3、m2=m3=2m1,小球与槽的两壁刚好接触,而且它们之间的摩擦可以忽略不计。开始时,三球处于槽中I、II、III的位置,彼此间距离相等,m2和m3静止,m1以速度沿槽运动,R为圆环的内半径和小球半径之和,各球之间的碰撞皆为弹性碰撞,求此系统的运动周期T。图26.答案:先考虑m1与m2的碰撞,令v1、v2分别为它们的碰后速度,由弹性正碰可得:当m2与m3相碰后,交换速度,m2停在III处,m3以的速率运动。因为三段圆弧相等,当m3运动到位置I时,m1恰好返回。它们在I处的碰撞,m3停在I处,m1又以v0的速度顺时针运动。当m1再运动到II时,共经历了一个周期的,则:m1两次由位置I运动到II处的时间为:,由位置II运动到III处的时间为:由位置III运动到I的时间为:。所以系统的周期为: