高中数学必修4第3章三角恒等变换3.1.1两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1.教学重点:通过探索得到两角差的余弦公式;2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、教学设想:(一)导入:问题1:我们在初中时就知道2cos452,3cos302,由此我们能否得到cos15cos4530?大家可以猜想,是不是等于cos45cos30呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式cos?(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为1P,cos等于角与单位圆交点的横坐标,也可以用角的余弦线来表示。思考?.1角函数线来探求公式怎样联系单位圆上的三(1)怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)?)2(的余弦线和余弦线的正弦线怎样作出角,、、思考2:怎样联系向量的数量积探求公式?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果?1两角差的余弦公式:sinsincoscos)cos((三)例题讲解例1、利用和、差角余弦公式求cos75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.232162cos75cos4530cos45cos30sin45sin3022224232162cos15cos4530cos45cos30sin45sin3022224点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:cos15cos6045,要学会灵活运用.例2、已知4sin5,5,,cos,213是第三象限角,求cos的值.解:因为,2,4sin5由此得2243cos1sin155又因为5cos,13是第三象限角,所以22512sin1cos11313所以3541233cos()coscossinsin51351365点评:注意角、的象限,也就是符号问题.思考:本题中没有),2,呢?(四)练习:不查表计算下列各式的值:20sin80sin20cos80cos1)(15sin2315cos212)(解:20sin80sin20cos80cos1)(2160cos)2080cos((五)小结:两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此2衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.(1)牢记公式.SSCCC)((2)在“给值求值”题型中灵活处理已、未知关系.(六)作业3.1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。二、教学目标⒈掌握两角和与差公式的推导过程;⒉培养学生利用公式求值、化简的分析、转化、推理能力;⒊发展学生的正、逆向思维能力,构建良好的思维品质。三、教学重点难点重点:两角和与差公式的应用和旋转变换公式;难点:两角和与差公式变aSina+bCosa为一个角的三角函数的形式。四、学情分析五、教学方法1.温故、推新,循序渐进,以学生为主体逐步掌握本节知识要点2.学案导学:见后面的学案。3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备多媒体课件七、课时安排:1课时八、教学过程(一)复习式导入:大家首先回顾一下两角和与差的余弦公...