“鸡兔同笼”问题中的数学思想方法及其渗透策略“鸡兔同笼”问题是我国古代数学名著《孙子算经》中记载的一道数学趣题,是《人教版义务教育课程标准实验教科书·数学》六年级上册第七单元“数学广角”中的教学内容。教材虽然只编排了一道例题,但此例在解决“鸡兔同笼”问题时,先后呈现了多种不同的解决问题的策略。这些策略的背后究竟隐含着哪些重要的数学思想方法,又该如何向学生有效渗透这些重要的数学思想方法?对此遵循新课程的目标,按照新课标的要求,结合新教材的特点,都颇具探究价值。一、解决“鸡兔同笼”问题策略中蕴涵的数学思想方法数学思想是对数学知识和方法的本质及规律的理性认识,数学方法则是数学思想的具体表现形式,数学思想和数学方法合在一起,称为数学思想方法。解决问题的策略是以一定的数学思想方法为指导,在特定问题情境中,为实现教学目标而制定并在实施过程中不断调适、优化,以使问题得以有效解决的最佳系统决策与设计。在解决“鸡兔同笼”问题的过程中所使用的不同的解决问题的策略背后,一定隐含了相应的数学思想方法。笔者从中挖掘出的以下数学思想方法,对于教师提高对数学思想方法的认识能力和渗透意识都十分必要。1.转化的思想方法教材首先将《孙子算经》中的原题:“笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?”通过小精灵的提示:“我们可以先从简单的问题入手。”转化成了例题:“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”同样是基本的“鸡兔同笼”问题,其中数量由大到小的变化,既为分析和解决问题提供了方便,也巧妙渗透了转化的数学思想方法。转化是指将有待解决的问题,归结为一类已经解决或较易解决的问题中去,以求得问题的解决。教学中常常用到的化“难”为“易”,化“繁”为“简”化“生”为“熟”,化“数”为“形”,化“曲”为“直”,化“圆”为“方”等都是数学学习中不可缺少的转化的思想方法。2.猜想的思想方法让学生先根据例题中的“从上面数,有8个头。”大胆猜测“鸡和兔各有几只?”再根据“从下面数,有26只脚。”来小心求证。在猜想不正确的情况下,学生逐步感受到“如果总脚数猜多了,就要多猜鸡少猜兔的只数;如果总脚数猜少了,要多猜兔少猜鸡的只数。”也正是在这样的过程中,学生参与探究的热情更高了,开展探究的勇气更大了,解决问题的思路更明了。美籍匈牙利数学家、教育家、数学解题方法论的开拓者波利亚说,“数学事实首先是被猜想,然后是被证实。”数学猜想是人们在已有知识经验的基础上对问题进行直觉试探,从而形成某种假设的一种思维活动和思想方法。让学生先“估”后“数”、先“估”后“算”、先“估”后“量”、先“猜想”后“列式求解”等,都决定了猜想的思想方法在数学教学中的重要地位与作用。3.列举的思想方法如果把各种猜想的结果有序填写到教材上的表格之中(见下表),即为全部猜想的有序列举。从表中不难看出“鸡3只、兔5只”就是满足问题要求的答案。观察表中数据的变化规律,还可发现:“当鸡的只数每减少1只,兔的只数每增加1只,脚的只数就会增加2只。”这一规律将为下面的数学思想方法的渗透作好了孕伏。这也正是列举和列表的数学思想方法在解决这一问题中的灵活运用。鸡876543210兔012345678脚161820222426283032在许多情况下,有些实际问题往往还无法建立合适的数学模型,而通过列举的数学思想方法却能非常方便地找到答案,进而也为进一步建立数学模型打开了一扇明亮的窗。4.画图的思想方法使用转化的数学思想方法,将大数目的“鸡兔同笼”问题转变成小数目的“鸡兔同笼”问题后,使得用画出直观图的思想方法来解决这一问题成为可能。第一步:画出8个头和26只脚;第二步:给8个头都配上两只脚;第三步:将多出的10只脚添加在其中的5个头上。经历上述画图过程后,用假设的思想方法解决“鸡兔同笼”问题的思路逐步清晰可见。画图的思想方法已成为小学生学习数学的一种需要。学生在自己画图的活动中,能感悟策略、发展思维、体会方法和获得思想。5.假设的思想方法教材指出,还可以这样想...