课时跟踪检测(十三)数列求和(习题课)一、选择题1.已知{an}为等比数列,Sn是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为,则S5等于()A.35B.33C.31D.292.数列{(-1)nn}的前n项和为Sn,则S2012等于()A.1006B.-1006C.2012D.-20123.数列{an}的通项公式是an=,若前n项和为10,则项数为()A.11B.99C.120D.1214.数列1,,,…,的前n项和为()A.B.C.D.5.已知数列{an}:,+,++,+++,…,那么数列{bn}={}前n项的和为()A.4(1-)B.4(-)C.1-D.-二、填空题6.数列{an}中,Sn=3n+m,当m=________时,数列{an}是等比数列.7.设数列{an}的通项为an=2n-7(n∈N*),则|a1|+|a2|+…+|a15|=________.8.数列11,103,1005,10007,…的前n项和Sn=________.三、解答题9.设{an}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{an}的通项公式;(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.10.已知数列{an}的前n项和为Sn,a1=2,Sn=n2+n.(1)求数列{an}的通项公式;(2)设的前n项和为Tn,求证Tn<1.1答案课时跟踪检测(十三)1.选C设{an}的公比为q,则有,解得∴S5==32=31,故选C.2.选AS2012=(-1+2)+(-3+4)+…+(-2011+2012)=1006.3.选C∵an==-,∴Sn=a1+a2+…+an=(-1)+(-)+…+(-)=-1,令-1=10,得n=120.4.选B该数列的通项为an=,分裂为两项差的形式为an=2,令n=1,2,3,…,则Sn=21-+-+-+…+-,∴Sn=2=.5.选A∵an===,∴bn===4(-).∴Sn=4(1-+-+-+…+-)=4(1-).6.解析:因为a1=S1=3+m,a2=S2-S1=32-3=6,a3=S3-S2=33-32=18,又由a1·a3=a,得m=-1.答案:-17.解析:∵an=2n-7,∴a1=-5,a2=-3,a3=-1,a4=1,a5=3,…,a15=23,∴|a1|+|a2|+…+|a15|=(5+3+1)+(1+3+5+…+23)=9+=153.答案:1538.解析:数列的通项公式an=10n+(2n-1).所以Sn=(10+1)+(102+3)+…+(10n+2n-1)=(10+102+…+10n)+[1+3+…+(2n-1)]=+=(10n-1)+n2.答案:(10n-1)+n229.解:(1)设q为等比数列{an}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{an}的通项为an=2·2n-1=2n(n∈N*).(2)易知bn=2n-1,则Sn=+n×1+×2=2n+1+n2-2.10.解:(1)∵Sn=n2+n,∴当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,又a1=2满足上式,∴an=2n(n∈N*).(2)证明:∵Sn=n2+n=n(n+1),∴==-,∴Tn=++…+=1-.∵n∈N*,∴>0,即Tn<1.3