电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第1部分 2.1第1课时 数列的概念与通项公式课时跟踪检测 新人教A版必修5-新人教A版高二必修5数学试题VIP免费

高中数学 第1部分 2.1第1课时 数列的概念与通项公式课时跟踪检测 新人教A版必修5-新人教A版高二必修5数学试题_第1页
1/3
高中数学 第1部分 2.1第1课时 数列的概念与通项公式课时跟踪检测 新人教A版必修5-新人教A版高二必修5数学试题_第2页
2/3
高中数学 第1部分 2.1第1课时 数列的概念与通项公式课时跟踪检测 新人教A版必修5-新人教A版高二必修5数学试题_第3页
3/3
课时跟踪检测(五)数列的概念与通项公式一、选择题1.下面有四个结论,其中叙述正确的有①数列的通项公式是唯一的;②数列可以看做是一个定义在正整数集或其子集上的函数;③数列若用图象表示,它是一群孤立的点;④每个数列都有通项公式.()A.①②B.②③C.③④D.①④2.数列的通项公式为an=则a2·a3等于()A.70B.28C.20D.83.数列-1,3,-7,15,…的一个通项公式可以是()A.an=(-1)n·(2n-1)B.an=(-1)n·(2n-1)C.an=(-1)n+1·(2n-1)D.an=(-1)n+1·(2n-1)4.(2012·宿州高二检测)已知数列{an}的通项公式是an=,那么这个数列是()A.递增数列B.递减数列C.常数列D.摆动数列5.下列命题:①已知数列{an},an=(n∈N*),那么是这个数列的第10项,且最大项为第一项.②数列,,2,,…的一个通项公式是an=.③已知数列{an},an=kn-5,且a8=11,则a17=29.④已知an+1=an+3,则数列{an}是递增数列.其中正确命题的个数为()A.4个B.3个C.2个D.1个二、填空题6.已知数列{an}的通项公式为an=,那么是它的第________项.7.已知数列{an}的前4项为11,102,1003,10004,…,则它的一个通项公式为________.8.(2013·福州高二检测)已知数列{an}的通项公式是an=n2-8n+12,那么该数列中为负数的项一共有________项.三、解答题9.求下列数列的一个可能的通项公式:(1)1,-1,1,-1,…;(2)1,10,2,11,3,12,…;(3)1+,1-,1+,1-,….110.在数列{an}中,a1=2,a17=66,通项公式是关于n的一次函数.(1)求数列{an}的通项公式;(2)求a2013;(3)2014是否为数列{an}中的项?答案课时跟踪检测(五)1.选B数列的通项公式不唯一,有的数列没有通项公式,所以①④不正确.2.选C由an=得a2=2,a3=10,所以a2·a3=20.3.选A数列各项正、负交替,故可用(-1)n来调节,又1=21-1,3=22-1,7=23-1,15=24-1,…,所以通项公式为an=(-1)n·(2n-1).4.选Aan==1-,∴当n越大,越小,则an越大,故该数列是递增数列.5.选A对于①,令an==⇒n=10,易知最大项为第一项.①正确.对于②,数列,,2,,…变为,,,,…⇒,,,,…⇒an=,②正确;对于③,an=kn-5,且a8=11⇒k=2⇒an=2n-5⇒a17=29.③正确;对于④,由an+1-an=3>0,易知④正确.6.解析:令=,解得n=4(n=-5舍去),所以是第4项.答案:47.解析:由于11=10+1,102=102+2,1003=103+3,10004=104+4,…,所以该数列的一个通项公式是an=10n+n.答案:an=10n+n8.解析:令an=n2-8n+12<0,解得2<n<6,又因为n∈N*,所以n=3,4,5,一共有3项.答案:39.答案:(1)an=(-1)n+1或an=(2)an=或an=.(3)an=1+(-1)n+1.10.解:(1)设an=kn+b(k≠0),则有2解得k=4,b=-2.∴an=4n-2.(2)a2013=4×2013-2=8050.(3)令2014=4n-2,解得n=504∈N*,∴2014是数列{an}的第504项.3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第1部分 2.1第1课时 数列的概念与通项公式课时跟踪检测 新人教A版必修5-新人教A版高二必修5数学试题

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部