课时分层作业(十)数学归纳法(建议用时:40分钟)一、选择题1.用数学归纳法证明3n≥n3(n≥3,n∈N+),第一步验证()A.n=1B.n=2C.n=3D.n=4C[由题知,n的最小值为3,所以第一步验证n=3是否成立.]2.已知f(n)=+++…+,则()A.f(n)共有n项,当n=2时,f(2)=+B.f(n)共有n+1项,当n=2时,f(2)=++C.f(n)共有n2-n项,当n=2时,f(2)=+D.f(n)共有n2-n+1项,当n=2时,f(2)=++D[结合f(n)中各项的特征可知,分子均为1,分母为n,n+1,…,n2的连续自然数共有n2-n+1个,且f(2)=++.]3.用数学归纳法证明1+2+3+…+n2=,则当n=k+1(n∈N+)时,等式左边应在n=k的基础上加上()A.k2+1B.(k+1)2C.D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2D[当n=k时,等式左边=1+2+…+k2,当n=k+1时,等式左边=1+2+…+k2+(k2+1)+…+(k+1)2,故选D.]4.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”,那么,下列命题总成立的是()A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(5)≥25成立,则当k≥4时,均有f(k)≥k2成立C.若f(7)<49成立,则当k≥8时,均有f(k)1).[证明](1)当n=2时,左边=1++,右边=2,左边<右边,不等式成立.(2)假设当n=k时,不等式成立,即1+++…+