2.3.1《直线与平面垂直的判定》学习目的•1.理解直线与平面垂直的定义;•2.掌握直线与平面垂直的判定定理内容及其应用;•3.应用直线与平面垂直的判定定理解决问题.•学习重点:直线与平面垂直的判定定理内容及其应用.•学习难点:直线与平面垂直的判定定理内容及论证过程复习引入:奎屯王新敞新疆1.直线和平面的位置关系是什么?(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)..引入新课在直线和平面相交的位置关系中,有一种相交是很特殊的,我们把它叫做垂直相交,这节课我们重点来探究这种形式的相交观察实例,发现新知旗杆与地面的关系,给人以直线与平面垂直的形象。观察实例,发现新知房屋的屋柱与地面的关系,给人以直线与平面垂直的形象。大桥的桥柱与水面的位置关系,给人以直线与平面垂直的形象。观察实例,发现新知实例研探,定义新知探究:什么叫做直线和平面垂直呢?当直线与平面垂直时,此直线与平面内的所有直线的关系又怎样呢?生活中线面垂直的实例:ABαB1C1CB在阳光下观察直立于地面的旗杆及它在地面的影子,随着时间的变化,尽管影子的位置在移动,但是旗杆所在的直线始终与影子所在的直线垂直(如图),事实上,旗杆AB所在直线与地面内任意一条不过点B的直线也是垂直的。直线与平面垂直的定义:直线与平面垂直的定义:直线与平面垂直的定义:直线与平面垂直的定义:如果一条直线l和一个平面α内的任意一条直线都垂直,我们就说直线l和平面α互相垂直.记作:l⊥ααlPl叫做α的垂线垂线,α叫做l的垂面垂面,l与α的唯一公共点P叫做垂足。垂足。画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直。①“任何”表示所有(提问:若直线与平面内的无数条直线垂直,则直线垂直与平面吗?如不是,直线与平面的位置关系如何?)②直线与平面垂直是直线与平面相交的一种特殊情况,在垂直时,直线与平面的交点叫做垂足.③a⊥α等价于对任意的直线mα,都有a⊥m.三点说明:利用定义,我们得到了判定线面垂直的最基本方法,同时也得到了线面垂直的最基本的性质.探究提出问题:有没有比较方便可行的方法来判断直线和平面垂直呢?师生活动:请同学们准备一块三角形的纸片,我们一起来做如图所示的试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问:折痕AD与桌面垂直吗?如何翻折才能保证折痕AD与桌面所在平面垂直?DBACBDCA直线与平面垂直的判定定理:直线与平面垂直的判定定理:直线与平面垂直的判定定理:直线与平面垂直的判定定理:一条直线和一个平面内的一条直线和一个平面内的两条相交直线两条相交直线都都垂垂直直,则这条直线垂直于这个平面,则这条直线垂直于这个平面..PmnlnmmnPllmlnα线线垂直线面垂直例题示范,巩固新知例1、一旗杆高8m,在它的顶点处系两条长10m的绳子,拉紧绳子并把它们的下端固定在地面上的两点(与旗杆脚不在同一条直线上)。如果这两点与旗杆脚距6m,那么旗杆就与地面垂直,为什么?解:如图,旗杆PO=8,两绳子长PA=PB=10,OA=OB=6,A,O,B三点不共线因此A,O,B三点确定平面α,因为PO2+AO2=PA2,PO2+BO2=PB2,所以PO⊥OA,PO⊥OB又OA∩OB=O所以OP⊥α,因此旗杆与地面垂直。例2、如图,已知a∥b,a⊥α。求证:b⊥α。例题示范,巩固新知分析:在平面内作两条相交直线,由直线与平面垂直的定义可知,直线a与这两条相交直线是垂直的,又由b平行a,可证b与这两条相交直线也垂直,从而可证直线与平面垂直。ab阅读P66页的证明过程.探究完成教材66页探究巩固练习1.平行四边形ABCD所在平面外有一点P,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、AD.CABDOP巩固练习._____,,,).3._____,).2.__,90,).1.,,,,,.20心的是则若心的是则若点边的是则若连接为垂足作外一点所在平面过ABCOPAPCPCPBPBPAABCOPCPBPAABOCPCPBPAPCPBPAOPOPABCPABC归纳小结今天这节课,我们学习了直线和平面垂直的定义,这个定义...