《2018年高考文科数学分类汇编》第十三篇:极坐标与参数方程解答题1.【2018全国一卷22】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.2.【2018全国二卷22】在直角坐标系xOy中,曲线C的参数方程为2cos4sinxθyθ,(θ为参数),直线l的参数方程为1cos2sinxtαytα,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.3.【2018全国三卷22】在平面直角坐标系xOy中,O⊙的参数方程为cossinxy,(为参数),过点02,且倾斜角为的直线l与O⊙交于AB,两点.(1)求的取值范围;(2)求AB中点P的轨迹的参数方程.4.【2018江苏卷21C】在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.参考答案解答题1.解:(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.2.解:(1)曲线的直角坐标方程为.当cos0时,l的直角坐标方程为tan2tanyx,当cos0时,l的直角坐标方程为1x.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程22(13cos)4(2cossin)80tt.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为1t,2t,则120tt.又由①得,故2cossin0,于是直线l的斜率tan2k.3.解:(1)O的直角坐标方程为221xy.当2时,l与O交于两点.当2时,记tank,则l的方程为2ykx.l与O交于两点当且仅当22||11k,解得1k或1k,即(,)42或(,)24.综上,的取值范围是(,)44.(2)l的参数方程为cos,(2sinxttyt为参数,44).设A,B,P对应的参数分别为At,Bt,Pt,则2ABPttt,且At,Bt满足222sin10tt.于是22sinABtt,2sinPt.又点P的坐标(,)xy满足cos,2sin.PPxtyt所以点P的轨迹的参数方程是2sin2,222cos222xy(为参数,44).4.解:因为曲线C的极坐标方程为,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为,则直线l过A(4,0),倾斜角为,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=.连结OB,因为OA为直径,从而∠OBA=,所以.因此,直线l被曲线C截得的弦长为.