二次函数压轴题备考策略中考压轴题的主要意图是考查学生综合运用知识的能力,其思维难度高,综合性强,知识点多、条件隐蔽、关系复杂、思路难觅、解法灵活。中考数学中,二次函数压轴题往往作为考试的一个重要考察点,考查学生数学综合应用能力。以二次函数为载体,对几何进行考查,主要涉及二次函数与三角形、四边形、圆等综合考查。中考压轴题都曾出现二次函数题。考生对二次函数压轴题不得其法,普遍畏惧压轴题,得分率偏低,这往往导致中考高分不多,满分更是难求。二次函数压轴题命题方向及解题策略进行了一些探索,为提高二次函数压轴题解题能力而共同努力。一.压轴题命题要求与思想(一)、课标的要求:新课程标准要求初中数学数学课程应体现基础性、普及性和发展性。因为数学在提高人的推理能力、抽象能力、想象力和创造力等方面发挥独特的作用。所以数学教学内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。而压轴题的考查符合这一要求。(二).中考的要求:根据初中数学考试大纲的要求,以下几个方面对数学中考做出了具体要求1.考试内容:(1)注重对数学核心内容的考查;(2)重视对实验操作能力的考查;(3)关注对数学应用能力的考查;(4)强化对自主探索能力的考查;2.主要数学能力目标在数与代数方面:建立数感和符号意识,发展运算能力和推理能力,形成模型思想。在图形与几何方面:建立空间观念,培养几何直观与推理能力(合情推理、演绎推理)。在具体的情境中,能从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,发展应用意识和实践能力。3.中考考核目标(1)考试区分度目标按照“课程标准”的安排,在数、式、方程、不等式之后是函数,而函数中二次函数又安排在最后,可见这部分内容是对初中生较高要求的内容,若这部分内容综合了几何的知识,再涉及动态变化,对学生的分析判断、推理论证、空间观念和探究能力都有较高的要求,对高学业水平有较好的区分度,有利于拉开不同学业水平所对应分数的差距,加大整卷学业水平分数的极差(2)考试效度目标压轴题一般考查本学段的核心内容和方法以体现本学段的最高要求,需要具有足够的思维量和较为复杂的解答过程及解答量,很难根据一个具体的结果来推断解答过程正确与否。精心设计压轴题,可以有效地改进了试卷的效度。(3)考试梯度目标中考中存在这样的事实:压轴题难度过高可能使绝大部分考生有一种压轴题高不可攀的心里压力,从而干脆放弃,使得压轴题形同虚设,导致试卷的信度下降.针对这种现象,应采取一些行之有效的措施防范出现这样的现象.其中,从不同角度对同一问题由浅入深地考查,凸显压轴题的梯度的做法较为多用。二.二次函数压轴题设计原理与特征(一)设计原理:二次函数压轴题主要是通过“数学思想”来设计的,主要涉及的数学思想有:1.方程与函数思想2.数形结合思想3.函数建模思想4.转化思想5.分类讨论思想。(二)设计特征:1.题设的设计:(1)已知抛物线经过的点(与坐标轴的交点)、顶点及对称轴,来确定抛物线。(2)引入直线与抛物线的位置关系,来确定直线和抛物线。(3)引入特殊的几何位置关系(垂直、平行、轴对称、中心对称等)。(4)引入特殊的几何图形主要是三角形、四边形、圆,三角形:等腰三角形、直角三角形、等腰直角三角形、相似三角形;四边形:平行四边形(矩形、菱形、正方形)、梯形(等腰梯形)。直线与圆的位置关系。2.结论的设计:(1)问题结构:中考二次函数压轴题通常有三小问,一直遵循“从易到难,从简单到复杂”的原则,第一问----3或4分、第二问----5或6分、第三问—6或5分;(2)基本结论的设置:第一问,求未知数、待定系数、点的坐标、线段的长度、角或锐角三角函数值,一次函数的关系式、二次函数的关系式。第二问,由动点引入特殊直线位置关系,要求利用图形面积公式、三解形相似、勾股定理、特殊的等式等手段建构二次函数模型,并探索函数中有关问题(最大值或最小值)。第三问,设置开放性和探索动点的特殊位置关系的存在性(并求出点的坐标)或探索形成特殊图形的条件(并求出点的坐标)和相关...