九年级下册相似三角形的专题讲义1相似三角形的应用知识点1平行投影在平行光线的照射下,物体所产生的影称为平行投影.如物体在阳光下的影称为平行投影.注意:物体所处的位置、方向及时间影响该物体的平行投影:01不同时刻、同一地点、同一物体影子的长度不同02同一时刻、同一地点、不同物体影子的长度与他们的物体长度成正比知识点2平行投影的特性(1)物体在太阳光下形成的影子随着物体与投影面的位置关系的改变而改变(2)当物体与投影面平行时,所形成的影子与物体全等(3)同一个物体在不同时刻的影子长度不同(4)不同物体在同一时刻,物体、太阳光与其影子组成的三角形相似,物体的高度之比与对应影子的长度之比相等(5)平行投影与物体的视图之间的关系:当投射线与投影面垂直时,这种投影叫做正投影,物体的正投影称为物体的视图知识点3中心投影由同一点(点光源)发出的光线形成的投影叫做中心投影,例如:探照灯、手电筒、路灯、台灯的光线可以看成是由同一点发出,以他们的光源所形成的投影就属于中心投影注意:光源和物体所处的位置及方向影响物体的中心投影01同一物体相对同一光源的距离近时的影子比远时的影子短02光源的方向或物体的位置改变,则物体影子的方向也发生改变,但光源、物体的影子始终分居物体的两侧知识点4视点、视线盲区的概念眼睛的位置叫做视点;由视点发出的线叫做视线;物体遮挡眼睛看不到的地点叫做盲区考点1平行投影例1亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M、颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C、D.然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C、D、N在同一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量的数据帮助他们求出住宅楼的高度吗?九年级下册相似三角形的专题讲义2例2如图,小明从路灯下向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是_______米.例3如图,晚上小亮在广场上乘凉,图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子.(2)已知灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.例4兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.5米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为多少?例5小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.九年级下册相似三角形的专题讲义3考点2中心投影例1如图,路灯(点P)距地面8米,身高1.6米的小明从距路灯的底部(点O)20米的点A?沿AO所在的直线行走14米到点B时,身影的长度是变长了还是变短了?变长或变短了多少米?例2如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2m,已知AB、CD在灯光下的影长分别为BM=1.6m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子;(2)求标杆EF的影长.例3如图,圆桌正上方的灯泡O(看作一个点)发出的光线照射到圆形桌面后,在地面上形成阴影.已知桌面的半径AC=0.6m,桌面与地面的距离AB=1m.灯泡与地面的距离OB=3m,求地面上阴影部分的面积为练习如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为▲cm.九年级下册相似三角形的专题讲义4考点3视点、视线、盲区例1我侦察员在距敌方200米的地方发现敌人的一座建筑...