1大同市2020届高三年级第一次联合考试试卷(县区)文科数学答案一、选择题:本题共12个小题,每小题5分,共60分。题号123456789101112答案CABACDCACBCC二、填空题:本题共4个小题,每小题5分,共20分。13、51214、815、416、23nn三、解答题:共70分。17、(12分)【解析】(1)因为3cos2aCbc,由正弦定理可得3sincossinsin2ACBC,因为sinsinsincoscossinBACACAC,所以3cossinsin2ACC,因为sin0C,所以3cos2A,π6A.······························(6分)(2)由π6AB,则2π3C,所以4BCAC,43AB,2BM,由余弦定理可得2222cos28AMBMABBMABB,所以27AM.····················································(12分)18、(12分)【解析】(1)由2×2列联表可得:22210026203024500.6493.8415050564477nadbcKabcdacbd,所以没有95%的把握认为“微信控”与“性别”有关;················(4分)2(2)根据题意所抽取的5位女性中“微信控”有3人,“非微信控”有2人;·························(8分)(3)设事件M“从(2)中抽取的5位女性中,再随机抽取3人,抽取3人中恰有2人是“微信控””抽取的5位女性中,“微信控”3人分别记为,,ABC;“非微信控”2人分别记为,DE.则再从中随机抽取3人构成的所有基本事件为:,,,,,,,,,ABCABDABEACDACEADEBCDBCEBDECDE,共有10种;抽取3人中恰有2人为“微信控”所含基本事件为:,,,,,ABDABEACDACEBCDBCE,共有6种所以63105PM.··············································(12分)19、(12分)【解析】(1) 底面,底面,∴.由题意,,且,是等腰直角三角形,∴,很明显,∴,∴,又 ,且平面,平面,∴平面, 平面,∴平面平面.····························(6分)(2)由(1)得平面平面,平面平面,作,垂足为,∴平面, 是的中点,∴,,∴三棱锥的体积为.3设点到面的距离为,由(Ⅰ)知,,所以的面积为.∴, 即,∴.所以点到平面的距离为.································(12分)20、(12分)【解析】(1)设0,4Qx,由抛物线定义知02QFpx,又2QFPQ=,02PQx,所以0022pxx,解得02px,将点,42pQ代入抛物线方程,解得4p.·························(4分)(2)由(1)知,C的方程为28yx,所以点T坐标为1,22,·········(5分)设直线MN的方程为xmyn,点11,Mxy,22,Nxy,由28xmynyx得2880ymyn,·································(7分)264320mn.···············································(8分)所以128yym,128yyn,····································(9分)所以121222121222221111228282MTNTkkyyyyyyxx12121212832282482yyyyyyyy6432881643mnm解得1nm····················································(11分)所以直线MN的方程为1(1)xmy,恒过定点1,1.·········(12分)421、(12分)【解析】(1)定义域,0x因为Raxaaxxxf11ln,所以,0,111222xxaxaxxaaxxf···················(1分)令,0,12xaxaxxh(i)当0a时,,0,1xxxh所以当1,0x时,0xh,此时0xf,函数xf...