【课堂新坐标】2016-2017学年高中数学第3章统计案例3.3学业分层测评北师大版选修2-3(建议用时:45分钟)学业达标]一、选择题1.已知P(B|A)=,P(A)=,则P(AB)等于()A.B.C.D.【解析】由P(B|A)=得P(AB)=P(B|A)·P(A)=×=.【答案】C2.下列说法正确的是()A.P(B|A)<P(AB)B.P(B|A)=是可能的C.0<P(B|A)<1D.P(A|A)=0【解析】由条件概率公式P(B|A)=及0≤P(A)≤1知P(B|A)≥P(AB),故A选项错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=,故B选项正确,由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.故选B.【答案】B3.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【解析】已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P==0.8.【答案】A4.(2016·泉州期末)从1,2,3,4,5中任取两个不同的数,事件A为“取到的两个数之和为偶数”,事件B为“取到的两个数均为偶数”,则P(B|A)等于()A.B.C.D.【解析】法一:P(A)==,P(AB)==,P(B|A)==.法二:事件A包含的基本事件数为C+C=4,在A发生的条件下事件B包含的基本事件为C=1,因此P(B|A)=.【答案】B5.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是()A.B.C.D.【解析】设“至少有一枚出现6点”为事件A,“两枚骰子的点数不同”为事件B,则n(B)=6×5=30,n(AB)=10,所以P(A|B)===.1【答案】A二、填空题6.已知P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________.【导学号:62690035】【解析】P(A|B)===;P(B|A)===.【答案】7.设A,B为两个事件,若事件A和B同时发生的概率为,在事件A发生的条件下,事件B发生的概率为,则事件A发生的概率为________.【解析】由题意知,P(AB)=,P(B|A)=.由P(B|A)=,得P(A)==.【答案】8.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.【解析】设事件A为“其中一瓶是蓝色”,事件B为“另一瓶是红色”,事件C为“另一瓶是黑色”,事件D为“另一瓶是红色或黑色”,则D=B∪C,且B与C互斥,又P(A)==,P(AB)==,P(AC)==,故P(D|A)=P(B∪C|A)=P(B|A)+P(C|A)=+=.【答案】三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n个.从一个袋子中任取两个球,取到的标号都是2的概率是.(1)求n的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.【解】(1)由题意得:==,解得n=2.(2)记“其中一个标号是1”为事件A,“另一个标号是1”为事件B,所以P(B|A)===.10.任意向x轴上(0,1)这一区间内掷一个点,问:(1)该点落在区间内的概率是多少?(2)在(1)的条件下,求该点落在内的概率.【解】由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A=,由几何概率的计算公式可知.(1)P(A)==.(2)令B=,则AB=,P(AB)==.故在A的条件下B发生的概率为P(B|A)===.能力提升]21.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是()A.B.C.D.【解析】一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A为“其中一个是女孩”,事件B为“另一个是女孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(女,女)},AB={(女,女)}.于是可知P(A)=,P(AB)=.问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A)==.【答案】D2.(2016·开封高二检测)将3颗骰子各掷一次,记事件A表示“三个点数都不相同”,事件B表示“至少出现一个3点”,则概率P(A|B)等于()A.B.C.D.【解析】...