电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

偏微分-方程数值解VIP免费

偏微分-方程数值解_第1页
1/16
偏微分-方程数值解_第2页
2/16
偏微分-方程数值解_第3页
3/16
[原创]偏微分方程数值解法的MATLAB源码【更新完毕】说明:由于偏微分的程序都比较长,比其他的算法稍复杂一些,所以另开一贴,专门上传偏微分的程序谢谢大家的支持!其他的数值算法见:..//Announce/Announce.asp?BoardID=209&id=82450041、古典显式格式求解抛物型偏微分方程(一维热传导方程)function[Uxt]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C)%古典显式格式求解抛物型偏微分方程%[Uxt]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C)%%方程:u_t=C*u_xx0<=x<=uX,0<=t<=uT%初值条件:u(x,0)=phi(x)%边值条件:u(0,t)=psi1(t),u(uX,t)=psi2(t)%%输出参数:U-解矩阵,第一行表示初值,第一列和最后一列表示边值,第二行表示第2层……%x-空间变量%t-时间变量%输入参数:uX-空间变量x的取值上限%uT-时间变量t的取值上限%phi-初值条件,定义为内联函数%psi1-边值条件,定义为内联函数%psi2-边值条件,定义为内联函数%M-沿x轴的等分区间数%N-沿t轴的等分区间数%C-系数,默认情况下C=1%%应用举例:%uX=1;uT=0.2;M=15;N=100;C=1;%phi=inline('sin(pi*x)');psi1=inline('0');psi2=inline('0');%[Uxt]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C);%设置参数C的默认值ifnargin==7C=1;end%计算步长dx=uX/M;%x的步长dt=uT/N;%t的步长x=(0:M)*dx;t=(0:N)*dt;r=C*dt/dx/dx;%步长比r1=1-2*r;ifr>0.5disp('r>0.5,不稳定')end%计算初值和边值U=zeros(M+1,N+1);fori=1:M+1U(i,1)=phi(x(i));endforj=1:N+1U(1,j)=psi1(t(j));U(M+1,j)=psi2(t(j));end%逐层求解forj=1:Nfori=2:MU(i,j+1)=r*U(i-1,j)+r1*U(i,j)+r*U(i+1,j);endendU=U';%作出图形mesh(x,t,U);title('古典显式格式,一维热传导方程的解的图像')xlabel('空间变量x')ylabel('时间变量t')zlabel('一维热传导方程的解U')return;古典显式格式不稳定情况古典显式格式稳定情况2、古典隐式格式求解抛物型偏微分方程(一维热传导方程)function[Uxt]=PDEParabolicClassicalImplicit(uX,uT,phi,psi1,psi2,M,N,C)%古典隐式格式求解抛物型偏微分方程%[Uxt]=PDEParabolicClassicalImplicit(uX,uT,phi,psi1,psi2,M,N,C)%%方程:u_t=C*u_xx0<=x<=uX,0<=t<=uT%初值条件:u(x,0)=phi(x)%边值条件:u(0,t)=psi1(t),u(uX,t)=psi2(t)%%输出参数:U-解矩阵,第一行表示初值,第一列和最后一列表示边值,第二行表示第2层……%x-空间变量%t-时间变量%输入参数:uX-空间变量x的取值上限%uT-时间变量t的取值上限%phi-初值条件,定义为内联函数%psi1-边值条件,定义为内联函数%psi2-边值条件,定义为内联函数%M-沿x轴的等分区间数%N-沿t轴的等分区间数%C-系数,默认情况下C=1%%应用举例:%uX=1;uT=0.2;M=50;N=50;C=1;%phi=inline('sin(pi*x)');psi1=inline('0');psi2=inline('0');%[Uxt]=PDEParabolicClassicalImplicit(uX,uT,phi,psi1,psi2,M,N,C);%设置参数C的默认值ifnargin==7C=1;end%计算步长dx=uX/M;%x的步长dt=uT/N;%t的步长x=(0:M)*dx;t=(0:N)*dt;r=C*dt/dx/dx;%步长比Diag=zeros(1,M-1);%矩阵的对角线元素Low=zeros(1,M-2);%矩阵的下对角线元素Up=zeros(1,M-2);%矩阵的上对角线元素fori=1:M-2Diag(i)=1+2*r;Low(i)=-r;Up(i)=-r;endDiag(M-1)=1+2*r;%计算初值和边值U=zeros(M+1,N+1);fori=1:M+1U(i,1)=phi(x(i));endforj=1:N+1U(1,j)=psi1(t(j));U(M+1,j)=psi2(t(j));end%逐层求解,需要使用追赶法(调用函数EqtsForwardAndBackward)forj=1:Nb1=zeros(M-1,1);b1(1)=r*U(1,j+1);b1(M-1)=r*U(M+1,j+1);b=U(2:M,j)+b1;U(2:M,j+1)=EqtsForwardAndBackward(Low,Diag,Up,b);endU=U';%作出图形mesh(x,t,U);title('古典隐式格式,一维热传导方程的解的图像')xlabel('空间变量x')ylabel('时间变量t')zlabel('一维热传导方程的解U')return;此算法需要使用追赶法求解三对角线性方程组,这个算法在上一篇帖子中已经给出,为了方便,再给出来追赶法解三对角线性方程组functionx=EqtsForwardAndBackward(L,D,U,b)%追赶法求解三对角线性方程组Ax=b%x=EqtsForwardAndBackward(L,D,U,b)%x:三对角线性方程组的解%L:三对角矩...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

偏微分-方程数值解

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部