课时分层作业(十五)(建议用时:60分钟)[基础达标练]一、选择题1.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式表示就是()A.B.C.D.D[“不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x≥95,y>380,z>45.]2.设0<b<a<1,则下列不等式成立的是()A.ab<b2<1B.logb<loga<0C.2b<2a<2D.a2<ab<1C[设a=,b=,验证即得A、D错误;结合y=x,y=2x的单调性得B错误,C正确.]3.已知a<0,b<-1,则下列不等式成立的是()A.a>>B.>>aC.>a>D.>>aD[取a=-2,b=-2,则=1,=-,∴>>a.]4.已知m=x2+2x,n=3x+2,则()A.m>nB.m
b,且>,则a>0,b<0B.若a>b,b≠0,则>1C.若a>b,且a+c>b+d,则c>dD.若a>b,且ac>bd,则c>dA[对于A,∵>,∴>0,又a>b,∴b-a<0,∴ab<0,∴a>0,b<0,故A正确;对于B,当a>0,b<0时,有<1,故B错;对于C,当a=10,b=2时,有10+1>2+3,但1<3,故C错;对于D,当a=-1,b=-2,c=-1,d=3时,有(-1)×(-1)>(-2)×3,但-1<3,故D错.故选A.]2.已知实数a,b,c满足b-a=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是()A.c≥b>aB.a>c≥bC.c>b>aD.a>c>bA[∵b-a=6-4a+3a2=32+>0,∴b>a,∵c-b=4-4a+a2=(2-a)2≥0,∵c≥b,∴c≥b>a.]3.已知a,b为非零实数,且a0时,a2b>0,ab2<0,a2b0,∴<,故成立;对于③,当a=-1,b=1时,==-1,故不成立.]4.已知实数x,y满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-3y的取值范围是________.[-6,9][设9x-3y=a(x-y)+b(4x-y)=(a+4b)x-(a+b)y,∴⇒∴9x-3y=(x-y)+2(4x-y),∵-1≤4x-y≤5,∴-2≤2(4x-y)≤10,又-4≤x-y≤-1,∴-6≤9x-3y≤9.]5.(1)比较x2+3与3x的大小.(2)已知a,b为正数,且a≠b,比较a3+b3与a2b+ab2的大小.2[解](1)(x2+3)-3x=x2-3x+3=2+≥>0,所以x2+3>3x.(2)(a3+b3)-(a2b+ab2)=a3+b3-a2b-ab2=a2(a-b)-b2(a-b)=(a-b)(a2-b2)=(a-b)2(a+b).因为a>0,b>0,且a≠b,所以(a-b)2>0,a+b>0,所以(a3+b3)-(a2b+ab2)>0,即a3+b3>a2b+ab2.3