2.3.22.3.2双曲线双曲线的简单几何性的简单几何性质质离心率顶点对称性双曲线椭圆范围|x|a,|y|≤b对称轴:x轴,y轴对称中心:原点(-a,0),(a,0),(0,b),(0,-b)长轴长:2a短轴长:2be=ac(0<e<1)方程曲线)0(12222babyax)0,0(12222babyax2、对称性一、研究双曲线的简单几何性质)0,0(12222babyax1、范围axaxaxax,,12222即关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)课堂新授课堂新授Ry3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点xyo-b1B2Bb1A2A-aa)0,()0,(21aAaA、顶点是如图,线段叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长2A1A2B1B(2)实轴与虚轴等长的双曲线叫等轴双曲线(3))0(222aayx1A2A1B2Bxyoxabyxabyab4、渐近线xabybabyax的渐近线为双曲线)0,0(12222(1)的渐近线为等轴双曲线)0(222aayx(2)xy利用渐近线可以较准确的画出双曲线的草图(3)5、离心率双曲线的叫做的比双曲线的焦距与实轴长,ace离心率。c>a>0e>1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:(2)e的范围:(3)e的含义:11)(2222eacaacab也增大增大且时,当abeabe,),,0(),1(的夹角增大增大时,渐近线与实轴exyo的简单几何性质二、导出双曲线)0,0(12222babxay-aab-b(1)范围:ayay,(2)对称性:关于x轴、y轴、原点都对称(3)顶点:(0,-a)、(0,a)(4)渐近线:xbay(5)离心率:aceace222bac二四个参数中,知二可求、、、在ecba(1)等轴双曲线的离心率e=?2(2)的双曲线是等轴双曲线离心率2e强调小结小结xyoax或axayay或)0,(a),0(axabyxbayace)(222bac其中关于坐标轴和原点都对称性质双曲线)0,0(12222babyax)0,0(12222babxay范围对称性顶点渐近线离心率图象xyo例1:求双曲线的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程。解:把方程化为标准方程可得:实半轴长a=4虚半轴长b=3半焦距c=焦点坐标是(0,-5),(0,5)离心率:渐近线方程:14416922xy1342222xy5342245acexy34例题讲解例题讲解12byax222(a>b>0)12222byax(a>0b>0)222ba(a>0b>0)c222ba(a>b>0)c椭圆双曲线方程a,b,c关系图象XY0F1F2p小结小结yXF10F2M渐近线离心率顶点对称性范围|x|a,|y|≤b|x|≥a,yR对称轴:x轴,y轴对称中心:原点对称轴:x轴,y轴对称中心:原点(-a,0)(a,0)(0,b)(0,-b)长轴:2a短轴:2b(-a,0)(a,0)实轴:2a虚轴:2be=ac(0<e<1)ace=(e1)无y=abx±