全国2012年10月概率论与数理统计(经管类)真题与解析一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。1.已知事件A,B,A∪B的概率分别为0.5,0.4,0.6,则P(A)=A.0.1B.0.2C.0.3D.0.5【答案】B【解析】因为,所以,而,所以,即;又由集合的加法公式P(AB)=P(A)+P(B)-P(A∪B)=0.5+0.4-0.6=0.3,所以=0.5-0.3=0.2,故选择B.[快解]用Venn图可以很快得到答案:【提示】1.本题涉及集合的运算性质:(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C);(iv)摩根律(对偶律),.2.本题涉及互不相容事件的概念和性质:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为A∩B=,且P(A∪B)=P(A)+P(B).3.本题略难,如果考试时遇到本试题的情况,可先跳过此题,有剩余时间再考虑。2.设F(x)为随机变量X的分布函数,则有A.F(-∞)=0,F(+∞)=0B.F(-∞)=1,F(+∞)=0C.F(-∞)=0,F(+∞)=1D.F(-∞)=1,F(+∞)=1【答案】C【解析】根据分布函数的性质,选择C。【提示】分布函数的性质:①0≤F(x)≤1;②对任意x1,x2(x10.如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布.本题x2+y2≤1为圆心在原点、半径为1的圆,包括边界,属于有界区域,其面积S=π,故选择D.【提示】课本介绍了两种二维连续型随机变量的分布:均匀分布和正态分布,注意它们的定义。若(X,Y)服从二维正态分布,表示为(X,Y)~.4.设随机变量X服从参数为2的指数分布,则E(2X-1)=A.0B.1C.3D.4【答案】A【解析】因为随机变量X服从参数为2的指数分布,即λ=2,所以;又根据数学期望的性质有E(2X-1)=2E(X)-1=1-1=0,故选择A.【提示】1.常用的六种分布(1)常用离散型随机变量的分布:X01概率qpA.两点分布①分布列②数学期望:E(X)=P③方差:D(X)=pq。B.二项分布:X~B(n,p)①分布列:,k=0,1,2,…,n;②数学期望:E(X)=np③方差:D(X)=npqC.泊松分布:X~P(λ)①分布列:,k=0,1,2,…②数学期望:E(X)=λ③方差:D(X)=λ(2)常用连续型随机变量的分布A.均匀分布:X~U[a,b]①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.B.指数分布:X~E(λ)①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.C.正态分布(A)正态分布:X~N(μ,σ2)①密度函数:,-∞