石景山区2012—2013学年第一学期期末考试试卷高三数学(文)本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合4,3,2,1U,2,1A,4,2B,则BACU)(()A.2,1B.4,32,C.4,3D.4,3,2,12.若复数iZ1,iZ32,则12ZZ()A.13iB.i2C.13iD.i33.AC为平行四边形ABCD的一条对角线,(2,4),(1,3),ABACAD�则()A.(2,4)B.(3,7)C.(1,1)D.(1,1)4.下列函数中,既是偶函数,又是在区间(0,)上单调递减的函数是()A.lnyxB.2yxC.cosyxD.||2xy5.设,mn是不同的直线,,是不同的平面,下列命题中正确的是()A.若//,,mnmn,则B.若//,,mnmn,则//C.若//,,//mnmn,则⊥D.若//,,//mnmn,则//6.执行右面的框图,若输出结果为3,则可输入的实数x值的个数为()A.1B.2C.3D.4开始输入x否是>2x2=-1yx2=logyx7.某三棱锥的三视图如图所示,该三棱锥的体积是()A.38B.4C.2D.348.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为k,即5knknZ,0,1,2,3,4k.给出如下四个结论:①20133;②22;③01234Z∪∪∪∪;④整数,ab属于同一“类”的充要条件是“0ab”.其中,正确结论的个数为().A.1B.2C.3D.4第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.不等式2560xx的解集为.10.直线+0xy被圆22+4+0xxy截得的弦长为.11.已知不等式组yxyxxa,,表示的平面区域S的面积为4,则a;正(主)视图侧(左)视图俯视图223231若点SyxP),(,则yxz2的最大值为.12.在等比数列{}na中,141=,=42aa-,则公比=q;123++++=naaaaL.13.在ABC中,若2,60,7aBb,则c.14.给出定义:若11<+22mxm(其中m为整数),则m叫做离实数x最近的整数,记作{}x,即{}=xm.在此基础上给出下列关于函数()={}fxxx的四个命题:①=()yfx的定义域是R,值域是11(,]22;②点(,0)k是=()yfx的图像的对称中心,其中kZ;③函数=()yfx的最小正周期为1;④函数=()yfx在13(,]22上是增函数.则上述命题中真命题的序号是.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数sin2(sincos)()cosxxxfxx.(Ⅰ)求)(xf的定义域及最小正周期;(Ⅱ)求)(xf在区间46,上的最大值和最小值.16.(本小题共14分)如图1,在RtABC中,90C,36BCAC,.D、E分别是ACAB、上的点,且//DEBC,将ADE沿DE折起到1ADE的位置,使1ADCD,如图2.(Ⅰ)求证://BC平面1ADE;(Ⅱ)求证:BC平面1ADC;(Ⅲ)当D点在何处时,1AB的长度最小,并求出最小值.17.(本小题共13分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4.现从盒子中随机抽取卡片.(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.18.(本小题共13分)已知函数()=ln+1,fxxaxaR是常数.(Ⅰ)求函数=()yfx的图象在点(1,(1))Pf处的切线l的方程;(Ⅱ)证明函数=()(1)yfxx的图象在直线l的下方;ABCDE图1图2A1BCDE(Ⅲ)若函数=()yfx有零点,求实数a的取值范围.19.(本小题共14分)已知椭圆的中心在原点,焦点在x轴上,离心率为32,长轴长为45,直线:=+lyxm交椭圆于不同的两点AB、.(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)若直线l不经过椭圆上的点(4,1)M,求证:直线MAMB、的斜率互为相反数.20.(本小题共13分)定义:如果数列{}na的任意连续三项均能构成一个三角形的三边长,则称{}na为“三角形”数列.对于“三角形”数列{}na,如果函数()yfx使得()nnbfa...