北京某羽毛球场馆空调气流组织设计方案1工程概况羽毛球比赛属于小球比赛,场馆的空调设计不但要满足温湿度的要求,更重要的是必须满足比赛场地对风速要求。根据相关设计规范及标准的要求,比赛场地地面以上9米区域内,风速不得大于0.2m/s[1],这就给空调系统设计及其运行提出了很大的难题。目前国内外大多数羽毛球场馆的做法是,比赛时将空调系统关掉,以防影响比赛。北京XxX羽毛球场馆(图1)是为2008年北京奥运会而建设的室内体育场,主要功能是羽毛球与艺术体操用体育馆,总建筑面积24383m2,空调面积20000m2。比赛大厅是体育馆的核心,包括比赛场地和观众区,观众区围绕比赛场地四周布置,分东、南、西、北四个区域,共设有7508个观众席位,其中固定席位5480个,活动席位2028个。1.1比赛大厅空调设计参数表1所示的是比赛大厅的比赛区和观众席的空调设计参数。1.2空调方式空调设计方式为全空气式二次回风系统,观众席座椅下送风,上侧回风。即,整个场馆分东、南、西、北四个区域,分别由12台组合式空调机组将处理好的空气通过风道系统送至四个区域观众席位下的结构风腔,利用结构风腔的静压箱作用(各区的结构风腔彼此独立),并在结构风腔上面的观众席位下开设了9100个风口,并利用可调节旋流风口送风。回风口设在场馆四周的中间层(8.47m)和上层(13.03m)。图2为场馆内气流组织设计示意图。观众席采用座椅下旋流风口送风,集中回风。比赛场地空调通过座位送风气流的涌流,来达到空调降温的目的。由图可见,结构风腔设计是否合理,是否真正能起到静压箱的作用,是确保场馆内气流组织达到设计要求的重要影响因素。2比赛大厅气流组织数值模拟与分析比赛大厅是体育馆的核心部分,也是空调作用的重点。而比赛大厅的气流组织处理,是实现大厅人工环境要求的最主要手段。为了考察空调系统设计的气流组织能否实现,本文利用计算流体力学技术(CFD),对场馆内设计工况下的气流组织进行了数值计算。并对可能存在的问题进行了分析。2.1数学物理模型采用CFD计算软件PHOENICS(2006)进行计算,湍流模型采用标准的模型。控制方程包括连续性方程、动量方程、能量方程及方程与式。通用的控制方程为:式中,为通用变量,代表等求解变量;为密度;为速度矢量;为广义扩散系数;为广义源项。湍流粘性系数对控制方程离散求解时采用有限容积法,动量方程采用交错网格,扩散项的离散采用迎风与中心相结合的一阶精度混合格式(HybridScheme),解方程的方法为SMPLE算法。考虑到比赛大厅基本上是对称结构,为简化计算,仅计算大厅的1/4区域的速度场、温度场。计算区域及其物理模型如图3所示。2.2计算条件(1)按分层空调考虑,非空调区域(顶棚)温度设为42℃,其余壁面设为绝热边界条件;(2)内部发热量(包括人体、灯光)按计算区域内的考虑;(3)旋流风口送风均匀,每个旋流风口送风量8.22m3/h,送风温度20℃;(4)排风口设在顶棚,排风量为124000m3/h;(5)回风口分别布置在大厅四周的中部(8.47m)和上层(13.03m)区域处,集中回风。相对压力为0.0Pa(设大气压P=100000Pa)。2.3计算结果分析图4a)和b)所示的是X=33.4m处Y-Z截面的速度场和温度场分布。从图中可以看出,根据设计条件,如果能保证观众席座椅下9100个旋流风口均匀送风,则能够满足空调系统的设计设计要求。即,比赛区域地面以上9m以内区域风速基本可保证小于0.2m/s。比赛区域的温度23℃左右,观众席区域的温度在22℃~24℃之间,整个计算区域的平均温度为23.8℃。可以看出,结构风腔能否起到静压箱的作用,是确保9100个旋流风口均匀送风的重要影响因素之一,同时也是保证比赛大厅的温度场和速度场满足设计要求的关键所在。3结构风腔气流组织优化3.1存在问题分析结构风腔作为静压箱,其几何特性和箱体的进出口特性是影响静压分布均匀性的重要因素。为此,本研究选择较为复杂的南区对应的结构风腔作为分析对象。图5a)为图2a)中对应观众席下结构风腔的X-Y平面,I-I断面为对称面。对应结构风腔X-Y平面的斜上方观众席上开设了大量直径为Φ=130mm的送风口(图5c))。从图5可见,从送风口1、2流进结构风腔的空气流经通道上,有几道梁柱,且形状、大小不一,这些结构构件都导致了...