§2 基本积分方法一、换元积分法第二类换元积分法第一类换元积分法换元积分法◆ 1.第一类换元积分法:设 f ( u) ,)( x 为连续函数,)(x 可导,且CuFduuf)()(,则CxFCuFduufdxxxf)]([)()()(')]([常见的凑微分形式:①)()(1)(baxdbaxfadxbaxf②)()(1)(baxdbaxfnadxbaxfnnn③)(ln)(ln1)(lnxdxfdxxxf④)(ln)(ln1)(lnxdxfdxxxf⑤)(sin)(sincos)(sinxdxfxdxxf⑥)(cos)(cossin)(cosxdxfxdxxf⑦)(tan)(tansec)(tan2xdxfxdxxf⑧)(arcsin)(arcsin1)(arcsin2xdxfdxxxf例计算dxxxx)1(arctan22解: 令txarctan,tdtdx2sec,则2cot)1(cscsectansec)1(arctan2222222tttddtttdtttttdxxxx =2cotcot2tdtttt=Ctttt2|sin|lncot2=Cxxxxx22)(arctan211||lnarctan。例计算下列积分:(1))1ln(xxee;(2)dxxxcos1cos1解:(1))1()1ln()1ln(xxxxedeee)(xuCeeedxeeeeexxxxxxxx)1ln()1(1)1()1()1ln((2)dxxxxdxxxxdxxx222sincos2sin2)cos1)(cos1()cos1(cos1cos1Cxxxxxddxxdxsin2cot2sinsin2csc222◆ 2.第二类换元积分法:)(t 单调、可导且0)(t,又)()]([ttf有原函数)(tG。则CxGCtGdtttfdxxf)]([)()(')]([)(1第二类换元法中常用的变量代换:① 三角代换:变根式积分三角有理式积分注意: 辅助三角形可为变量还原提供方便。② 倒数代换tx1 : 可消去分母中的变量x。③ 指数代换:适用被积函数由a x 或 e x 构成的代数式。例计算积分解:令dttdxtxtex6,ln66例计算积分21xxdx。6321xxxeeedxdtttttdttttt)113136(611223原式Cttttarctan3)1ln(23|1|ln3ln62Ceeexxxx636arctan3)1ln(23|1|ln3解:dtttttxxxdxcossincossin12=dtttttttcossinsincoscossin21Cttt|cossin|ln2121Cxxx|1|ln21arcsin212例计算积分dxxxx1122解: 令tx1 ,则22222222212)1(1111)1(1111111ttddttdtttdtttttdxxxx =CxxxCtt1arcsin11arcsin22二、分部积分法分部积分公式:vduuvudv◆分部积分法条件:u,v 具有连续导数。选取 u,v 的原则:容易求出比要易于求出udvvduv◆可用分部积分法求积分的类型:dxaxaxedxxxxxdxeaxaxxaxaxcossin,arccosarctanln)(P,cossin)(Pnn例 计算积分xdxx ln。解: 原式 =Cxxxxdxxxxxd4ln221ln22ln2222例 计算积分dxeexx2arctandvu(x)dvu( x)u,v 可任选解:)1(arctan21)(arctan21arctan22222xxxxxxxxxeedeeeededxeeCeeeexxxx)arctanarctan(212。例设xxxf)1ln()(ln,计算dxxf)(。解:,设xtln,则tex,tteetf)1ln()(。dxxf)(=dxeeeededxeexxx...