第七章 平行线的证明4.平行线的性质江西省九江市九江学院浔阳附中 陈 霖一、学生知识状况分析 学生技能基础:在学习本课之前,学生对平行线的性质已经比较熟悉,也有了初步的逻辑推理能力,特别是上一节课的学习,使学生对简单的证明步骤有了更为清楚的认识,这为今天的学习奠定了一个良好的基础. 活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础. 二、教学任务分析在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,上一节课安排的《为什么它们平行》和本节课安排的《如果两条直线平行》旨在让学生从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路,为此,本课时的教学目标是: 1.认识平行线的三条性质。 2.能熟练运用这三条性质证明几何题。 3.进一步理解和总结证明的步骤、格式、方法. 4.了解两定理在条件和结构上的区别,体会正逆的思维过程. 5. 进一步发展学生的合情推理能力,培养学生的逻辑思维能力。三、教学过程分析本节课的设计分为四个环节:情境引入——探索与应用——反馈练习——反思与小结1第一环节:情境引入活动内容: 一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B 是 130°,第二次拐的角∠C 是多少度?说明:这是一个实际问题,要求出∠C 的度数,需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.活动目的: 通过对一个实际问题的解决,引出平行线的性质。教学效果: 由于学生对平行线的性质比较熟悉,因此,在学生回忆起这些知识后,能很快解决实际问题。第二环节:探索与应用活动内容: ① 画出直线 AB 的平行线 CD,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的? ② 平行公理:两直线平行同位角相等. ③ 两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢? a∥b(已知),∴∠1=∠2(两条直线平行,同位角相等) ∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题. 教师根据学生叙述,给出板书:两条平行线被第三条直线所截,内错角相等 师:下面...