电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

初中数学行程问题专题VIP免费

初中数学行程问题专题_第1页
1/7
初中数学行程问题专题_第2页
2/7
初中数学行程问题专题_第3页
3/7
初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。1.单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从提高到,运行时间缩短了。甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为,那么列车在两城市间提速前的运行时间为,提速后的运行时间为.【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间.【列出方程】.例2:某铁路桥长1000,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1,整列火车完全在桥上的时间共。求火车的速度和长度。【分析】如果设火车的速度为,火车的长度为,用线段表示大桥和火车的长度,根据题意可画出如下示意图:y100060x1000y40x【等量关系式】火车行驶的路程=桥长+火车长;火车行驶的路程=桥长-火车长【列出方程组】2.单人双程(等量关系式:来时的路程=回时的路程):例1:某校组织学生乘汽车去自然保护区野营,先以的速度走平路,后又以的速度爬坡,共用了;返回时汽车以的速度下坡,又以的速度走平路,共用了.学校距自然保护区有多远。【分析】如果设学校距自然保护区为,由题目条件:去时用了,则有些同学会认为总的速度为,然后用去时走平路的速度+去时爬坡的速度=总的速度,得出方程,这种解法是错误的,因为速度是不能相加的。不妨设平路的长度为,坡路的长度为,则去时走平路用了,去时爬坡用了,而去时总共用了,这时,时间是可以相加的;回来时汽车下坡用了,回来时走平路用了,而回来时总共用了.则学校到自然保护区的距离为。【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间回来时走平路用的时间+回来时爬坡用的时间=回来时用的总时间【列出方程组】3.双人行程:(Ⅰ)单块应用:只单个应用同向而行或背向而行或相向而行或追击问题。1)同时同地同向而行:A,B两事物同时同地沿同一个方向行驶例:甲车的速度为,乙车的速度为,两车同时同地出发,同向而行。经过多少时间两车相距。【分析】如果设经过后两车相距,则甲走的路程为,乙走的路程为,根据题意可画出如下示意图:80xkm乙甲60xkm280km【等量关系式】甲车行驶的距离+280=乙车行驶的距离【列出方程】2)同时同地背向而行:A,B两事物同时同地沿相反方向行驶例:甲车的速度为,乙车的速度为,两车同时同地出发,背向而行。经过多少时间两车相距。【分析】如果设经过后两车相距,则甲走的路程为,乙走的路程为,根据题意可画出如下示意图:甲乙60xkm80xkm280km【等量关系式】甲车行驶的距离+乙车行驶的距离=280【列出方程】3)同时相向而行(相遇问题):例:甲,乙两人在相距的A,B两地相向而行,乙的速度是甲的速度的2倍,两人同时处发后相遇,求甲,乙两人的速度。【分析】如果设甲的速度为,则乙的速度为,甲走过的路程为,乙走过的路程为,根据题意可画出如下示意图:甲1.5xkm1.5×2xkm乙AB10km280km【等量关系式】甲车行驶的距离+乙车行驶的距离=10【列出方程】4)追及问题:例:一对学生从学校步行去博物馆,他们以的速度行进后,一名教师骑自行车以的速度按原路追赶学生队伍。这名教师从出发到途中与学生队伍会合共用了多少时间?【分析】如果设这名教师从出发到途中与学生队伍会合共用了,则教师走过的路程为,学生走过的路程为教师出发前走过的路程加上教师出发后走过的路程,而学生在教师出发前走过的路程为,学生在教师出发后走过的路程为,又由于教师走过的路程等于学生走过的路程。根据题意可画出如下示意图:学生5xkm教师15xkm【等量关系式】教师走过的路程=学生在教师出发前走过的路程+学生在教师出发后走过的路程【列出方程】5)不同时同地同向而行(与追击问题相似):例:甲,乙两人都从A地出发到B地,甲出发后乙才从A地出发,乙出发后甲...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

初中数学行程问题专题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部