动量和能量高考试题10.(1993年·全国)如图所示,A、B是位于水平桌面上的两个质量相等的小木块,离墙壁的距离分别为L和l,与桌面之间的滑动摩擦系数分别为μA和μB.今给A以某一初速度,使之从桌面的右端向左运动.假定A、B之间,B与墙之间的碰撞时间都很短,且碰撞中总动能无损失.若要使木块A最后不从桌面上掉下来,则A的初速度最大不能超过_______.【答案】11.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在与挡板B碰撞前瞬间速度v的大小;(2)弹簧最大压缩量为d时的弹性势能Ep(设弹簧处于原长时弹性势能为零).【答案】(1);(2)解析:(1)由机械能守恒定律,有解得v=(2)A、B在碰撞过程中内力远大于外力,由动量守恒,有碰后A、B一起压缩弹簧,)到弹簧最大压缩量为d时,A、B克服摩擦力所做的功由能量守恒定律,有解得12.(2006年·重庆理综)如图,半径为R的光滑圆形轨道固定在竖黄冈理科电子题库http://www.likehg.com直面内.小球A、B质量分别为m、βm(β为待定系数).A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为14R,碰撞中无机械能损失.重力加速度为g.试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度.【答案】(1)3;(2),方向水平向左;,方向水平向右;4.5mg,方向竖直向下.(3)见解析解析:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A、B两球应同时达到最大高度处,对A、B两球组成的系统,由机械能守恒定律得,解得β=3(2)设A、B第一次碰撞后的速度分别为v1、v2,取方向水平向右为正,对A、B两球组成的系统,有解得,方向水平向左;,方向水平向右.设第一次碰撞刚结束时轨道对B球的支持力为N,方向竖直向上为正,则,B球对轨道的压力,方向竖直向下.(3)设A、B球第二次碰撞刚结束时的速度分别为V1、V2,取方向水平向右为正,则解得V1=-,V2=0.(另一组解V1=-v1,V2=-v2不合题意,舍去)由此可得:当n为奇数时,小球A、B在第n次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;当n为偶数时,小球A、B在第n次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同.13.(2006年·江苏)如图所示,质量均为m的A、B两个弹性小球,用长为2l的不可伸长的轻绳连接.现把A、B两球置于距地面高H处(H足够大),艰巨为l.当A球自由下落的同时,B球以速度v0指向A球水平抛出间距为l.当A球自由下落的同时,B球以速度v0指向A球水平抛出.求:(1)两球从开始运动到相碰,A球下落的高度.黄冈理科电子题库http://www.likehg.com(2)A、B两球碰撞(碰撞时无机械能损失)后,各自速度的水平分量.(3)轻绳拉直过程中,B球受到绳子拉力的冲量大小.【答案】(1);(2);(3)解析:(1)设到两球相碰时A球下落的高度为h,由平抛运动规律得①②联立①②得③(2)A、B两球碰撞过程中,由水平方向动量守恒,得④由机械能守恒定律,得⑤式中联立④⑤解得(3)轻绳拉直后,两球具有相同的水平速度,设为vBx,,由水平方向动量守恒,得由动量定理得14.(2005年·广东)如图所示,两个完全相同的质量为m的木板A、B置于水平地面上,它们的间距s=2.88m.质量为2m,大小可忽略的物块C置于A板的左端.C与A之间的动摩擦因数为μ1=0.22,A、B与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C施加一个水平向右,大小为的恒力F,假定木板A、B碰撞时间极短且碰撞后粘连在一起,要...