1一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。二.排列:从n个不同元素中,任取m (m ≤n)个元素,按照一定的顺序排成一.mnmnA有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1. 公式: 1.!!121mnnmnnnnAmn⋯⋯2.规定: 0!1(1)!(1)!,(1)!(1)!nnnnnn(2) ![(1)1]!(1)!!(1)!!nnnnnnnnn ;(3)1 11111(1)!(1)!(1)!(1)!!(1)!nnnnnnnnn三.组合:从n 个不同元素中任取m(m≤n)个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式:CAAn nnmmnm nmnmnmmm11⋯⋯!!!!10nC规定:组合数性质:.2nnnnnmnmnmnmnnmnCCCCCCCC21011⋯⋯,,①;②;③;④11112111212211rrrrrrrrrrrrrrrrrrnnrrrnnrrnnnCCCCCCCCCCCCCCCLLL注:若12mm1212m =mm +mnnnCC则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。2.解排列、组合题的基本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。(3)分步处理: 与分类处理类似, 某些问题总体不好解决时,常常分成若干步, 再由分步计数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。(4)两种途径:①元素分析法;②位置分析法。3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。(4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法. 即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。(5)、顺序一定,除法处理。先排后除或先定后插解法一: 对于某几个元素按一定的...