激光焊接技术及其应用激光焊接技术及其应用1.目的2.激光焊接概述3.激光焊接工艺参数4.实例分享目录CONTENTS目的Part1本文概述了激光焊接技术,简单介绍其历史发展,以及应用中工艺流程以及影响的参数等等、、、名词定义激光:LSRER(LightAmplificationbyStimulatedEmissionofRadiation)熔深:DepthofFusionYAG激光器:是以钇铝石榴石晶体为基质的一种固体激光器CO2激光器:是以二氧化碳为基质的一种气体激光器概述Part1概述激光的特性Part1概述用镜片收集指向性及聚焦性好的波长的光,将能量密度极高的激光作为热源的焊接方法。可实现相对于深度而言,宽度较窄的融入焊接。根据发出作为能量的光源的方法,激光焊接可分为2大类。“气体激光”利用二氧化碳等气体发出激光(例:二氧化碳气体激光焊接)。而“固体激光”则利用钇、铝及石榴石等矿石发出激光,例如YAG激光焊接。激光焊接的特性激光焊接概述Part1激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按照其工作方式常常可以分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光电焊机、光纤传输激光焊接机,激光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池以达到焊接的目的。焊接原理:1、热导焊:使用激光功率低,熔池形成时间长,且熔深浅,多用于小型零件的焊接2、深熔焊:功率密度高,激光辐射区金属熔化速度快,在金属熔化的同时伴有强烈的汽化,能获得熔深较大的焊缝,焊缝的深宽比较大。概述Part1激光焊接历史20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已经成功应用于微、小型零件的精密焊接中。高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。概述Part1激光焊接优点概述(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低;(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用;(3)不需使用电极,没有电极污染或受损的顾虑。且因不属于接触式焊接制程,机具的耗损及变形皆可降至最低;(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥;(5)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下);(6)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件;(7)可焊材质种类范围大,亦可相互接合各种异质材料;(8)易于以自动化进行高速焊接,亦可以数位或电脑控制;(9)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰;(10)不受磁场所影响(电弧焊接及电子束焊接则容易),能精确的对准焊件;(11)可焊接不同物性(如不同电阻)的两种金属;(12)不需真空,亦不需做X射线防护;(13)若以穿孔式焊接,焊道深一宽比可达10:1;(14)可以切换装置将激光束传送至多个工作站。Part1激光焊接缺点概述(1)焊件位置需非常精确,务必在激光束的聚焦范围内;(2)焊件需使用夹治具时,必须确保焊件的最终位置需与激光束将冲击的焊点对准;(3)最大可焊厚度受到限制渗透厚度远超过19mm的工件,生产线上不适合使用激光焊接;(4)高反射性及高导热性材料如铝、铜及其合金等,焊接性会受激光所改变;(5)当进行中能量至高能量的激光束焊接时,需使用等离子控制器将熔池周围的离子化气体驱除,以确保焊道的再出现;(6)能量转换效率太低,通常低于10%;(7)焊道快速凝固,可能有气孔及脆化的顾虑;(8)设备昂贵。激光焊接概述Part1YAG激光器是以钇铝石榴石晶体为基质的一种固体激光器。钇铝石榴石的化学式是Y3Al5O15,简称为YAG概述激光焊接的工艺流程:Part2工艺...