1 分 数 应 用 题 解 题 方 法 ( 学 生 复 习 、 家 长 辅 导 用 ) 解答分数乘法应用题时,可以借助于线段图来分析数量关系。在画线段图时,先画单位“1”的量。 一、分数应用题主要讨论的是以下三者之间的关系。 1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。 2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。(也叫单位“1”的数量) 3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。(也叫分率对应的数量) 二、分数应用题的分类。(三类) 1、求一个数的几分之几是多少。(解这类应用题用乘法) 这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,基本的数量关系是: 单 位 “1” 的 量 ×分 率 =分 率 对 应 的 量 。 2、已知一个数的几分之几是多少,求这个数。(解这类应用题用除法) 这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。基本的数量关系是: 2 分 率 对 应 的 量 ÷分 率 =单 位 “1”的 量 。 3、求一个数是另一个数的几分之几。 这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。基本的数量关系是: 比较量 ÷ 标准量 = 分 率 。 三、分数应用题的基本训练。 1、正确审题训练。 正确审题是正确解题的前提。这里所说的审题,首先是根据题中的分率句,能准确分清比较量和单位“1”的量(看分率是谁的几分之几,谁就是单位“1”的量)。 判断单位“1”的量:知道单位“1”的量(用乘法),未知道单位“1”的量(用除法),为确定解题方法奠定基础;其次会把“比”字句转化成“是”字句;第三是能将省略式的分率句换说成比较详细的句子的能力。 2、画线段图的训练。 线段图有直观、形象等特点。按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。 3、量、率对应关系训练。 量、率对应关系的训练是解较复杂分数应用题的重要环节。通过训练,能根据应用题的已知条件发挥联想,找出各种 3 量、率间接对应关系,为正确解题铺平道路。 如:一批货物,第一次运走总数的15 ,第二次运走总数的14 ,还剩下143 吨。则量、率对应关系有: (1)把货物的总重量看做是:单位“1” (2)第一次运走的占总重量的:...